x uchun yechish
x=-\frac{1}{2}=-0,5
x = -\frac{8}{3} = -2\frac{2}{3} \approx -2,666666667
Grafik
Baham ko'rish
Klipbordga nusxa olish
-9x=6x^{2}+8+10x
2 ga 3x^{2}+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-9x-6x^{2}=8+10x
Ikkala tarafdan 6x^{2} ni ayirish.
-9x-6x^{2}-8=10x
Ikkala tarafdan 8 ni ayirish.
-9x-6x^{2}-8-10x=0
Ikkala tarafdan 10x ni ayirish.
-19x-6x^{2}-8=0
-19x ni olish uchun -9x va -10x ni birlashtirish.
-6x^{2}-19x-8=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-19 ab=-6\left(-8\right)=48
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -6x^{2}+ax+bx-8 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 48-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Har bir juftlik yigʻindisini hisoblang.
a=-3 b=-16
Yechim – -19 yigʻindisini beruvchi juftlik.
\left(-6x^{2}-3x\right)+\left(-16x-8\right)
-6x^{2}-19x-8 ni \left(-6x^{2}-3x\right)+\left(-16x-8\right) sifatida qaytadan yozish.
-3x\left(2x+1\right)-8\left(2x+1\right)
Birinchi guruhda -3x ni va ikkinchi guruhda -8 ni faktordan chiqaring.
\left(2x+1\right)\left(-3x-8\right)
Distributiv funktsiyasidan foydalangan holda 2x+1 umumiy terminini chiqaring.
x=-\frac{1}{2} x=-\frac{8}{3}
Tenglamani yechish uchun 2x+1=0 va -3x-8=0 ni yeching.
-9x=6x^{2}+8+10x
2 ga 3x^{2}+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-9x-6x^{2}=8+10x
Ikkala tarafdan 6x^{2} ni ayirish.
-9x-6x^{2}-8=10x
Ikkala tarafdan 8 ni ayirish.
-9x-6x^{2}-8-10x=0
Ikkala tarafdan 10x ni ayirish.
-19x-6x^{2}-8=0
-19x ni olish uchun -9x va -10x ni birlashtirish.
-6x^{2}-19x-8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -6 ni a, -19 ni b va -8 ni c bilan almashtiring.
x=\frac{-\left(-19\right)±\sqrt{361-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
-19 kvadratini chiqarish.
x=\frac{-\left(-19\right)±\sqrt{361+24\left(-8\right)}}{2\left(-6\right)}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{361-192}}{2\left(-6\right)}
24 ni -8 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{169}}{2\left(-6\right)}
361 ni -192 ga qo'shish.
x=\frac{-\left(-19\right)±13}{2\left(-6\right)}
169 ning kvadrat ildizini chiqarish.
x=\frac{19±13}{2\left(-6\right)}
-19 ning teskarisi 19 ga teng.
x=\frac{19±13}{-12}
2 ni -6 marotabaga ko'paytirish.
x=\frac{32}{-12}
x=\frac{19±13}{-12} tenglamasini yeching, bunda ± musbat. 19 ni 13 ga qo'shish.
x=-\frac{8}{3}
\frac{32}{-12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{6}{-12}
x=\frac{19±13}{-12} tenglamasini yeching, bunda ± manfiy. 19 dan 13 ni ayirish.
x=-\frac{1}{2}
\frac{6}{-12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{8}{3} x=-\frac{1}{2}
Tenglama yechildi.
-9x=6x^{2}+8+10x
2 ga 3x^{2}+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-9x-6x^{2}=8+10x
Ikkala tarafdan 6x^{2} ni ayirish.
-9x-6x^{2}-10x=8
Ikkala tarafdan 10x ni ayirish.
-19x-6x^{2}=8
-19x ni olish uchun -9x va -10x ni birlashtirish.
-6x^{2}-19x=8
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-6x^{2}-19x}{-6}=\frac{8}{-6}
Ikki tarafini -6 ga bo‘ling.
x^{2}+\left(-\frac{19}{-6}\right)x=\frac{8}{-6}
-6 ga bo'lish -6 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{19}{6}x=\frac{8}{-6}
-19 ni -6 ga bo'lish.
x^{2}+\frac{19}{6}x=-\frac{4}{3}
\frac{8}{-6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{19}{6}x+\left(\frac{19}{12}\right)^{2}=-\frac{4}{3}+\left(\frac{19}{12}\right)^{2}
\frac{19}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{19}{12} olish uchun. Keyin, \frac{19}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{19}{6}x+\frac{361}{144}=-\frac{4}{3}+\frac{361}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{19}{12} kvadratini chiqarish.
x^{2}+\frac{19}{6}x+\frac{361}{144}=\frac{169}{144}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{3} ni \frac{361}{144} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{19}{12}\right)^{2}=\frac{169}{144}
x^{2}+\frac{19}{6}x+\frac{361}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{19}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{19}{12}=\frac{13}{12} x+\frac{19}{12}=-\frac{13}{12}
Qisqartirish.
x=-\frac{1}{2} x=-\frac{8}{3}
Tenglamaning ikkala tarafidan \frac{19}{12} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}