Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-9m^{2}=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
m^{2}=\frac{-1}{-9}
Ikki tarafini -9 ga bo‘ling.
m^{2}=\frac{1}{9}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-1}{-9} kasrini \frac{1}{9} ga soddalashtirish mumkin.
m=\frac{1}{3} m=-\frac{1}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
-9m^{2}+1=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\left(-9\right)}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, 0 ni b va 1 ni c bilan almashtiring.
m=\frac{0±\sqrt{-4\left(-9\right)}}{2\left(-9\right)}
0 kvadratini chiqarish.
m=\frac{0±\sqrt{36}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
m=\frac{0±6}{2\left(-9\right)}
36 ning kvadrat ildizini chiqarish.
m=\frac{0±6}{-18}
2 ni -9 marotabaga ko'paytirish.
m=-\frac{1}{3}
m=\frac{0±6}{-18} tenglamasini yeching, bunda ± musbat. \frac{6}{-18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
m=\frac{1}{3}
m=\frac{0±6}{-18} tenglamasini yeching, bunda ± manfiy. \frac{-6}{-18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
m=-\frac{1}{3} m=\frac{1}{3}
Tenglama yechildi.