Baholash
\frac{3}{2}=1,5
Omil
\frac{3}{2} = 1\frac{1}{2} = 1,5
Viktorina
Polynomial
- 9 \cdot \frac { n } { 3 n } - \frac { 3 n } { n } \times \frac { 3 n } { n - 3 n }
Baham ko'rish
Klipbordga nusxa olish
-9\times \frac{1}{3}-\frac{3n}{n}\times \frac{3n}{n-3n}
Surat va maxrajdagi ikkala n ni qisqartiring.
\frac{-9}{3}-\frac{3n}{n}\times \frac{3n}{n-3n}
\frac{-9}{3} hosil qilish uchun -9 va \frac{1}{3} ni ko'paytirish.
-3-\frac{3n}{n}\times \frac{3n}{n-3n}
-3 ni olish uchun -9 ni 3 ga bo‘ling.
-3-3\times \frac{3n}{n-3n}
Surat va maxrajdagi ikkala n ni qisqartiring.
-3-3\times \frac{3n}{-2n}
-2n ni olish uchun n va -3n ni birlashtirish.
-3-3\times \frac{3}{-2}
Surat va maxrajdagi ikkala n ni qisqartiring.
-3-3\left(-\frac{3}{2}\right)
\frac{3}{-2} kasri manfiy belgini olib tashlash bilan -\frac{3}{2} sifatida qayta yozilishi mumkin.
-3-\frac{3\left(-3\right)}{2}
3\left(-\frac{3}{2}\right) ni yagona kasrga aylantiring.
-3-\frac{-9}{2}
-9 hosil qilish uchun 3 va -3 ni ko'paytirish.
-3-\left(-\frac{9}{2}\right)
\frac{-9}{2} kasri manfiy belgini olib tashlash bilan -\frac{9}{2} sifatida qayta yozilishi mumkin.
-3+\frac{9}{2}
-\frac{9}{2} ning teskarisi \frac{9}{2} ga teng.
-\frac{6}{2}+\frac{9}{2}
-3 ni -\frac{6}{2} kasrga o‘giring.
\frac{-6+9}{2}
-\frac{6}{2} va \frac{9}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{3}{2}
3 olish uchun -6 va 9'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}