Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-8x^{2}+14x=-15
14x ni ikki tarafga qo’shing.
-8x^{2}+14x+15=0
15 ni ikki tarafga qo’shing.
a+b=14 ab=-8\times 15=-120
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -8x^{2}+ax+bx+15 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -120-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Har bir juftlik yigʻindisini hisoblang.
a=20 b=-6
Yechim – 14 yigʻindisini beruvchi juftlik.
\left(-8x^{2}+20x\right)+\left(-6x+15\right)
-8x^{2}+14x+15 ni \left(-8x^{2}+20x\right)+\left(-6x+15\right) sifatida qaytadan yozish.
-4x\left(2x-5\right)-3\left(2x-5\right)
Birinchi guruhda -4x ni va ikkinchi guruhda -3 ni faktordan chiqaring.
\left(2x-5\right)\left(-4x-3\right)
Distributiv funktsiyasidan foydalangan holda 2x-5 umumiy terminini chiqaring.
x=\frac{5}{2} x=-\frac{3}{4}
Tenglamani yechish uchun 2x-5=0 va -4x-3=0 ni yeching.
-8x^{2}+14x=-15
14x ni ikki tarafga qo’shing.
-8x^{2}+14x+15=0
15 ni ikki tarafga qo’shing.
x=\frac{-14±\sqrt{14^{2}-4\left(-8\right)\times 15}}{2\left(-8\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -8 ni a, 14 ni b va 15 ni c bilan almashtiring.
x=\frac{-14±\sqrt{196-4\left(-8\right)\times 15}}{2\left(-8\right)}
14 kvadratini chiqarish.
x=\frac{-14±\sqrt{196+32\times 15}}{2\left(-8\right)}
-4 ni -8 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{196+480}}{2\left(-8\right)}
32 ni 15 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{676}}{2\left(-8\right)}
196 ni 480 ga qo'shish.
x=\frac{-14±26}{2\left(-8\right)}
676 ning kvadrat ildizini chiqarish.
x=\frac{-14±26}{-16}
2 ni -8 marotabaga ko'paytirish.
x=\frac{12}{-16}
x=\frac{-14±26}{-16} tenglamasini yeching, bunda ± musbat. -14 ni 26 ga qo'shish.
x=-\frac{3}{4}
\frac{12}{-16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{40}{-16}
x=\frac{-14±26}{-16} tenglamasini yeching, bunda ± manfiy. -14 dan 26 ni ayirish.
x=\frac{5}{2}
\frac{-40}{-16} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{3}{4} x=\frac{5}{2}
Tenglama yechildi.
-8x^{2}+14x=-15
14x ni ikki tarafga qo’shing.
\frac{-8x^{2}+14x}{-8}=-\frac{15}{-8}
Ikki tarafini -8 ga bo‘ling.
x^{2}+\frac{14}{-8}x=-\frac{15}{-8}
-8 ga bo'lish -8 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{4}x=-\frac{15}{-8}
\frac{14}{-8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{4}x=\frac{15}{8}
-15 ni -8 ga bo'lish.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{15}{8}+\left(-\frac{7}{8}\right)^{2}
-\frac{7}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{8} olish uchun. Keyin, -\frac{7}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{15}{8}+\frac{49}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{8} kvadratini chiqarish.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{169}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{15}{8} ni \frac{49}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{8}\right)^{2}=\frac{169}{64}
x^{2}-\frac{7}{4}x+\frac{49}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{8}=\frac{13}{8} x-\frac{7}{8}=-\frac{13}{8}
Qisqartirish.
x=\frac{5}{2} x=-\frac{3}{4}
\frac{7}{8} ni tenglamaning ikkala tarafiga qo'shish.