Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-7x^{2}-6x-1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-7\right)\left(-1\right)}}{2\left(-7\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-7\right)\left(-1\right)}}{2\left(-7\right)}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+28\left(-1\right)}}{2\left(-7\right)}
-4 ni -7 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36-28}}{2\left(-7\right)}
28 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{8}}{2\left(-7\right)}
36 ni -28 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{2}}{2\left(-7\right)}
8 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{2}}{2\left(-7\right)}
-6 ning teskarisi 6 ga teng.
x=\frac{6±2\sqrt{2}}{-14}
2 ni -7 marotabaga ko'paytirish.
x=\frac{2\sqrt{2}+6}{-14}
x=\frac{6±2\sqrt{2}}{-14} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{2} ga qo'shish.
x=\frac{-\sqrt{2}-3}{7}
6+2\sqrt{2} ni -14 ga bo'lish.
x=\frac{6-2\sqrt{2}}{-14}
x=\frac{6±2\sqrt{2}}{-14} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{2} ni ayirish.
x=\frac{\sqrt{2}-3}{7}
6-2\sqrt{2} ni -14 ga bo'lish.
-7x^{2}-6x-1=-7\left(x-\frac{-\sqrt{2}-3}{7}\right)\left(x-\frac{\sqrt{2}-3}{7}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-3-\sqrt{2}}{7} ga va x_{2} uchun \frac{-3+\sqrt{2}}{7} ga bo‘ling.