y, x uchun yechish
x=\frac{3}{8}=0,375
y = -\frac{15}{8} = -1\frac{7}{8} = -1,875
Grafik
Viktorina
Simultaneous Equation
5xshash muammolar:
- 6 y + 2 x = 12 \text { and } x - 3 ( x + 2 ) = 2 y - 8 x
Baham ko'rish
Klipbordga nusxa olish
x-3x-6=2y-8x
Ikkinchi tenglamani yeching. -3 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x-6=2y-8x
-2x ni olish uchun x va -3x ni birlashtirish.
-2x-6-2y=-8x
Ikkala tarafdan 2y ni ayirish.
-2x-6-2y+8x=0
8x ni ikki tarafga qo’shing.
6x-6-2y=0
6x ni olish uchun -2x va 8x ni birlashtirish.
6x-2y=6
6 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-6y+2x=12,-2y+6x=6
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
-6y+2x=12
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi y ni izolyatsiyalash orqali y ni hisoblang.
-6y=-2x+12
Tenglamaning ikkala tarafidan 2x ni ayirish.
y=-\frac{1}{6}\left(-2x+12\right)
Ikki tarafini -6 ga bo‘ling.
y=\frac{1}{3}x-2
-\frac{1}{6} ni -2x+12 marotabaga ko'paytirish.
-2\left(\frac{1}{3}x-2\right)+6x=6
\frac{x}{3}-2 ni y uchun boshqa tenglamada almashtirish, -2y+6x=6.
-\frac{2}{3}x+4+6x=6
-2 ni \frac{x}{3}-2 marotabaga ko'paytirish.
\frac{16}{3}x+4=6
-\frac{2x}{3} ni 6x ga qo'shish.
\frac{16}{3}x=2
Tenglamaning ikkala tarafidan 4 ni ayirish.
x=\frac{3}{8}
Tenglamaning ikki tarafini \frac{16}{3} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
y=\frac{1}{3}\times \frac{3}{8}-2
\frac{3}{8} ni x uchun y=\frac{1}{3}x-2 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
y=\frac{1}{8}-2
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{1}{3} ni \frac{3}{8} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
y=-\frac{15}{8}
-2 ni \frac{1}{8} ga qo'shish.
y=-\frac{15}{8},x=\frac{3}{8}
Tizim hal qilindi.
x-3x-6=2y-8x
Ikkinchi tenglamani yeching. -3 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x-6=2y-8x
-2x ni olish uchun x va -3x ni birlashtirish.
-2x-6-2y=-8x
Ikkala tarafdan 2y ni ayirish.
-2x-6-2y+8x=0
8x ni ikki tarafga qo’shing.
6x-6-2y=0
6x ni olish uchun -2x va 8x ni birlashtirish.
6x-2y=6
6 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-6y+2x=12,-2y+6x=6
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}-6&2\\-2&6\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}12\\6\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}-6&2\\-2&6\end{matrix}\right))\left(\begin{matrix}-6&2\\-2&6\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-6&2\\-2&6\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
\left(\begin{matrix}-6&2\\-2&6\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-6&2\\-2&6\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-6&2\\-2&6\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{6}{-6\times 6-2\left(-2\right)}&-\frac{2}{-6\times 6-2\left(-2\right)}\\-\frac{-2}{-6\times 6-2\left(-2\right)}&-\frac{6}{-6\times 6-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}&\frac{1}{16}\\-\frac{1}{16}&\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}\times 12+\frac{1}{16}\times 6\\-\frac{1}{16}\times 12+\frac{3}{16}\times 6\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{8}\\\frac{3}{8}\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
y=-\frac{15}{8},x=\frac{3}{8}
y va x matritsa elementlarini chiqarib olish.
x-3x-6=2y-8x
Ikkinchi tenglamani yeching. -3 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x-6=2y-8x
-2x ni olish uchun x va -3x ni birlashtirish.
-2x-6-2y=-8x
Ikkala tarafdan 2y ni ayirish.
-2x-6-2y+8x=0
8x ni ikki tarafga qo’shing.
6x-6-2y=0
6x ni olish uchun -2x va 8x ni birlashtirish.
6x-2y=6
6 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-6y+2x=12,-2y+6x=6
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
-2\left(-6\right)y-2\times 2x=-2\times 12,-6\left(-2\right)y-6\times 6x=-6\times 6
-6y va -2y ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni -2 ga va ikkinchining har bir tarafidagi barcha shartlarni -6 ga ko'paytiring.
12y-4x=-24,12y-36x=-36
Qisqartirish.
12y-12y-4x+36x=-24+36
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 12y-4x=-24 dan 12y-36x=-36 ni ayirish.
-4x+36x=-24+36
12y ni -12y ga qo'shish. 12y va -12y shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
32x=-24+36
-4x ni 36x ga qo'shish.
32x=12
-24 ni 36 ga qo'shish.
x=\frac{3}{8}
Ikki tarafini 32 ga bo‘ling.
-2y+6\times \frac{3}{8}=6
\frac{3}{8} ni x uchun -2y+6x=6 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
-2y+\frac{9}{4}=6
6 ni \frac{3}{8} marotabaga ko'paytirish.
-2y=\frac{15}{4}
Tenglamaning ikkala tarafidan \frac{9}{4} ni ayirish.
y=-\frac{15}{8}
Ikki tarafini -2 ga bo‘ling.
y=-\frac{15}{8},x=\frac{3}{8}
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}