x uchun yechish
x=\frac{1}{2}=0,5
x=-1
Grafik
Baham ko'rish
Klipbordga nusxa olish
-6x^{2}-3x=-3
Ikkala tarafdan 3x ni ayirish.
-6x^{2}-3x+3=0
3 ni ikki tarafga qo’shing.
-2x^{2}-x+1=0
Ikki tarafini 3 ga bo‘ling.
a+b=-1 ab=-2=-2
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -2x^{2}+ax+bx+1 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=1 b=-2
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(-2x^{2}+x\right)+\left(-2x+1\right)
-2x^{2}-x+1 ni \left(-2x^{2}+x\right)+\left(-2x+1\right) sifatida qaytadan yozish.
-x\left(2x-1\right)-\left(2x-1\right)
Birinchi guruhda -x ni va ikkinchi guruhda -1 ni faktordan chiqaring.
\left(2x-1\right)\left(-x-1\right)
Distributiv funktsiyasidan foydalangan holda 2x-1 umumiy terminini chiqaring.
x=\frac{1}{2} x=-1
Tenglamani yechish uchun 2x-1=0 va -x-1=0 ni yeching.
-6x^{2}-3x=-3
Ikkala tarafdan 3x ni ayirish.
-6x^{2}-3x+3=0
3 ni ikki tarafga qo’shing.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-6\right)\times 3}}{2\left(-6\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -6 ni a, -3 ni b va 3 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-6\right)\times 3}}{2\left(-6\right)}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+24\times 3}}{2\left(-6\right)}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\left(-6\right)}
24 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\left(-6\right)}
9 ni 72 ga qo'shish.
x=\frac{-\left(-3\right)±9}{2\left(-6\right)}
81 ning kvadrat ildizini chiqarish.
x=\frac{3±9}{2\left(-6\right)}
-3 ning teskarisi 3 ga teng.
x=\frac{3±9}{-12}
2 ni -6 marotabaga ko'paytirish.
x=\frac{12}{-12}
x=\frac{3±9}{-12} tenglamasini yeching, bunda ± musbat. 3 ni 9 ga qo'shish.
x=-1
12 ni -12 ga bo'lish.
x=-\frac{6}{-12}
x=\frac{3±9}{-12} tenglamasini yeching, bunda ± manfiy. 3 dan 9 ni ayirish.
x=\frac{1}{2}
\frac{-6}{-12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-1 x=\frac{1}{2}
Tenglama yechildi.
-6x^{2}-3x=-3
Ikkala tarafdan 3x ni ayirish.
\frac{-6x^{2}-3x}{-6}=-\frac{3}{-6}
Ikki tarafini -6 ga bo‘ling.
x^{2}+\left(-\frac{3}{-6}\right)x=-\frac{3}{-6}
-6 ga bo'lish -6 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{2}x=-\frac{3}{-6}
\frac{-3}{-6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{2}x=\frac{1}{2}
\frac{-3}{-6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
x^{2}+\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
Qisqartirish.
x=\frac{1}{2} x=-1
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}