z uchun yechish
z=\frac{\sqrt{19}-2}{5}\approx 0,471779789
z=\frac{-\sqrt{19}-2}{5}\approx -1,271779789
Baham ko'rish
Klipbordga nusxa olish
-5z^{2}-4z+3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)\times 3}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, -4 ni b va 3 ni c bilan almashtiring.
z=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)\times 3}}{2\left(-5\right)}
-4 kvadratini chiqarish.
z=\frac{-\left(-4\right)±\sqrt{16+20\times 3}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
z=\frac{-\left(-4\right)±\sqrt{16+60}}{2\left(-5\right)}
20 ni 3 marotabaga ko'paytirish.
z=\frac{-\left(-4\right)±\sqrt{76}}{2\left(-5\right)}
16 ni 60 ga qo'shish.
z=\frac{-\left(-4\right)±2\sqrt{19}}{2\left(-5\right)}
76 ning kvadrat ildizini chiqarish.
z=\frac{4±2\sqrt{19}}{2\left(-5\right)}
-4 ning teskarisi 4 ga teng.
z=\frac{4±2\sqrt{19}}{-10}
2 ni -5 marotabaga ko'paytirish.
z=\frac{2\sqrt{19}+4}{-10}
z=\frac{4±2\sqrt{19}}{-10} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{19} ga qo'shish.
z=\frac{-\sqrt{19}-2}{5}
4+2\sqrt{19} ni -10 ga bo'lish.
z=\frac{4-2\sqrt{19}}{-10}
z=\frac{4±2\sqrt{19}}{-10} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{19} ni ayirish.
z=\frac{\sqrt{19}-2}{5}
4-2\sqrt{19} ni -10 ga bo'lish.
z=\frac{-\sqrt{19}-2}{5} z=\frac{\sqrt{19}-2}{5}
Tenglama yechildi.
-5z^{2}-4z+3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-5z^{2}-4z+3-3=-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
-5z^{2}-4z=-3
O‘zidan 3 ayirilsa 0 qoladi.
\frac{-5z^{2}-4z}{-5}=-\frac{3}{-5}
Ikki tarafini -5 ga bo‘ling.
z^{2}+\left(-\frac{4}{-5}\right)z=-\frac{3}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
z^{2}+\frac{4}{5}z=-\frac{3}{-5}
-4 ni -5 ga bo'lish.
z^{2}+\frac{4}{5}z=\frac{3}{5}
-3 ni -5 ga bo'lish.
z^{2}+\frac{4}{5}z+\left(\frac{2}{5}\right)^{2}=\frac{3}{5}+\left(\frac{2}{5}\right)^{2}
\frac{4}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{5} olish uchun. Keyin, \frac{2}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
z^{2}+\frac{4}{5}z+\frac{4}{25}=\frac{3}{5}+\frac{4}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{5} kvadratini chiqarish.
z^{2}+\frac{4}{5}z+\frac{4}{25}=\frac{19}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{5} ni \frac{4}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(z+\frac{2}{5}\right)^{2}=\frac{19}{25}
z^{2}+\frac{4}{5}z+\frac{4}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z+\frac{2}{5}\right)^{2}}=\sqrt{\frac{19}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z+\frac{2}{5}=\frac{\sqrt{19}}{5} z+\frac{2}{5}=-\frac{\sqrt{19}}{5}
Qisqartirish.
z=\frac{\sqrt{19}-2}{5} z=\frac{-\sqrt{19}-2}{5}
Tenglamaning ikkala tarafidan \frac{2}{5} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}