Asosiy tarkibga oʻtish
z uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-5z^{2}-4z+3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)\times 3}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, -4 ni b va 3 ni c bilan almashtiring.
z=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)\times 3}}{2\left(-5\right)}
-4 kvadratini chiqarish.
z=\frac{-\left(-4\right)±\sqrt{16+20\times 3}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
z=\frac{-\left(-4\right)±\sqrt{16+60}}{2\left(-5\right)}
20 ni 3 marotabaga ko'paytirish.
z=\frac{-\left(-4\right)±\sqrt{76}}{2\left(-5\right)}
16 ni 60 ga qo'shish.
z=\frac{-\left(-4\right)±2\sqrt{19}}{2\left(-5\right)}
76 ning kvadrat ildizini chiqarish.
z=\frac{4±2\sqrt{19}}{2\left(-5\right)}
-4 ning teskarisi 4 ga teng.
z=\frac{4±2\sqrt{19}}{-10}
2 ni -5 marotabaga ko'paytirish.
z=\frac{2\sqrt{19}+4}{-10}
z=\frac{4±2\sqrt{19}}{-10} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{19} ga qo'shish.
z=\frac{-\sqrt{19}-2}{5}
4+2\sqrt{19} ni -10 ga bo'lish.
z=\frac{4-2\sqrt{19}}{-10}
z=\frac{4±2\sqrt{19}}{-10} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{19} ni ayirish.
z=\frac{\sqrt{19}-2}{5}
4-2\sqrt{19} ni -10 ga bo'lish.
z=\frac{-\sqrt{19}-2}{5} z=\frac{\sqrt{19}-2}{5}
Tenglama yechildi.
-5z^{2}-4z+3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-5z^{2}-4z+3-3=-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
-5z^{2}-4z=-3
O‘zidan 3 ayirilsa 0 qoladi.
\frac{-5z^{2}-4z}{-5}=-\frac{3}{-5}
Ikki tarafini -5 ga bo‘ling.
z^{2}+\left(-\frac{4}{-5}\right)z=-\frac{3}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
z^{2}+\frac{4}{5}z=-\frac{3}{-5}
-4 ni -5 ga bo'lish.
z^{2}+\frac{4}{5}z=\frac{3}{5}
-3 ni -5 ga bo'lish.
z^{2}+\frac{4}{5}z+\left(\frac{2}{5}\right)^{2}=\frac{3}{5}+\left(\frac{2}{5}\right)^{2}
\frac{4}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{5} olish uchun. Keyin, \frac{2}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
z^{2}+\frac{4}{5}z+\frac{4}{25}=\frac{3}{5}+\frac{4}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{5} kvadratini chiqarish.
z^{2}+\frac{4}{5}z+\frac{4}{25}=\frac{19}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{5} ni \frac{4}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(z+\frac{2}{5}\right)^{2}=\frac{19}{25}
z^{2}+\frac{4}{5}z+\frac{4}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z+\frac{2}{5}\right)^{2}}=\sqrt{\frac{19}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z+\frac{2}{5}=\frac{\sqrt{19}}{5} z+\frac{2}{5}=-\frac{\sqrt{19}}{5}
Qisqartirish.
z=\frac{\sqrt{19}-2}{5} z=\frac{-\sqrt{19}-2}{5}
Tenglamaning ikkala tarafidan \frac{2}{5} ni ayirish.