Asosiy tarkibga oʻtish
z uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-5z^{2}+z+12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-1±\sqrt{1^{2}-4\left(-5\right)\times 12}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, 1 ni b va 12 ni c bilan almashtiring.
z=\frac{-1±\sqrt{1-4\left(-5\right)\times 12}}{2\left(-5\right)}
1 kvadratini chiqarish.
z=\frac{-1±\sqrt{1+20\times 12}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
z=\frac{-1±\sqrt{1+240}}{2\left(-5\right)}
20 ni 12 marotabaga ko'paytirish.
z=\frac{-1±\sqrt{241}}{2\left(-5\right)}
1 ni 240 ga qo'shish.
z=\frac{-1±\sqrt{241}}{-10}
2 ni -5 marotabaga ko'paytirish.
z=\frac{\sqrt{241}-1}{-10}
z=\frac{-1±\sqrt{241}}{-10} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{241} ga qo'shish.
z=\frac{1-\sqrt{241}}{10}
-1+\sqrt{241} ni -10 ga bo'lish.
z=\frac{-\sqrt{241}-1}{-10}
z=\frac{-1±\sqrt{241}}{-10} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{241} ni ayirish.
z=\frac{\sqrt{241}+1}{10}
-1-\sqrt{241} ni -10 ga bo'lish.
z=\frac{1-\sqrt{241}}{10} z=\frac{\sqrt{241}+1}{10}
Tenglama yechildi.
-5z^{2}+z+12=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-5z^{2}+z+12-12=-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
-5z^{2}+z=-12
O‘zidan 12 ayirilsa 0 qoladi.
\frac{-5z^{2}+z}{-5}=-\frac{12}{-5}
Ikki tarafini -5 ga bo‘ling.
z^{2}+\frac{1}{-5}z=-\frac{12}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
z^{2}-\frac{1}{5}z=-\frac{12}{-5}
1 ni -5 ga bo'lish.
z^{2}-\frac{1}{5}z=\frac{12}{5}
-12 ni -5 ga bo'lish.
z^{2}-\frac{1}{5}z+\left(-\frac{1}{10}\right)^{2}=\frac{12}{5}+\left(-\frac{1}{10}\right)^{2}
-\frac{1}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{10} olish uchun. Keyin, -\frac{1}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
z^{2}-\frac{1}{5}z+\frac{1}{100}=\frac{12}{5}+\frac{1}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{10} kvadratini chiqarish.
z^{2}-\frac{1}{5}z+\frac{1}{100}=\frac{241}{100}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{12}{5} ni \frac{1}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(z-\frac{1}{10}\right)^{2}=\frac{241}{100}
z^{2}-\frac{1}{5}z+\frac{1}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z-\frac{1}{10}\right)^{2}}=\sqrt{\frac{241}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z-\frac{1}{10}=\frac{\sqrt{241}}{10} z-\frac{1}{10}=-\frac{\sqrt{241}}{10}
Qisqartirish.
z=\frac{\sqrt{241}+1}{10} z=\frac{1-\sqrt{241}}{10}
\frac{1}{10} ni tenglamaning ikkala tarafiga qo'shish.