Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-5x^{2}+9x=-3
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-5x^{2}+9x-\left(-3\right)=-3-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
-5x^{2}+9x-\left(-3\right)=0
O‘zidan -3 ayirilsa 0 qoladi.
-5x^{2}+9x+3=0
0 dan -3 ni ayirish.
x=\frac{-9±\sqrt{9^{2}-4\left(-5\right)\times 3}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, 9 ni b va 3 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\left(-5\right)\times 3}}{2\left(-5\right)}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81+20\times 3}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81+60}}{2\left(-5\right)}
20 ni 3 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{141}}{2\left(-5\right)}
81 ni 60 ga qo'shish.
x=\frac{-9±\sqrt{141}}{-10}
2 ni -5 marotabaga ko'paytirish.
x=\frac{\sqrt{141}-9}{-10}
x=\frac{-9±\sqrt{141}}{-10} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{141} ga qo'shish.
x=\frac{9-\sqrt{141}}{10}
-9+\sqrt{141} ni -10 ga bo'lish.
x=\frac{-\sqrt{141}-9}{-10}
x=\frac{-9±\sqrt{141}}{-10} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{141} ni ayirish.
x=\frac{\sqrt{141}+9}{10}
-9-\sqrt{141} ni -10 ga bo'lish.
x=\frac{9-\sqrt{141}}{10} x=\frac{\sqrt{141}+9}{10}
Tenglama yechildi.
-5x^{2}+9x=-3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-5x^{2}+9x}{-5}=-\frac{3}{-5}
Ikki tarafini -5 ga bo‘ling.
x^{2}+\frac{9}{-5}x=-\frac{3}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{9}{5}x=-\frac{3}{-5}
9 ni -5 ga bo'lish.
x^{2}-\frac{9}{5}x=\frac{3}{5}
-3 ni -5 ga bo'lish.
x^{2}-\frac{9}{5}x+\left(-\frac{9}{10}\right)^{2}=\frac{3}{5}+\left(-\frac{9}{10}\right)^{2}
-\frac{9}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{10} olish uchun. Keyin, -\frac{9}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{5}x+\frac{81}{100}=\frac{3}{5}+\frac{81}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{10} kvadratini chiqarish.
x^{2}-\frac{9}{5}x+\frac{81}{100}=\frac{141}{100}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{5} ni \frac{81}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{10}\right)^{2}=\frac{141}{100}
x^{2}-\frac{9}{5}x+\frac{81}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{10}\right)^{2}}=\sqrt{\frac{141}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{10}=\frac{\sqrt{141}}{10} x-\frac{9}{10}=-\frac{\sqrt{141}}{10}
Qisqartirish.
x=\frac{\sqrt{141}+9}{10} x=\frac{9-\sqrt{141}}{10}
\frac{9}{10} ni tenglamaning ikkala tarafiga qo'shish.