w uchun yechish
w = -\frac{6}{5} = -1\frac{1}{5} = -1,2
w=6
Baham ko'rish
Klipbordga nusxa olish
\left(w-7\right)\left(w+1\right)\left(-5\right)-\left(w+1\right)\times 6=-7
w qiymati -1,7 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(w-7\right)\left(w+1\right) ga, w-7,\left(w+1\right)\left(w-7\right) ning eng kichik karralisiga ko‘paytiring.
\left(w^{2}-6w-7\right)\left(-5\right)-\left(w+1\right)\times 6=-7
w-7 ga w+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-5w^{2}+30w+35-\left(w+1\right)\times 6=-7
w^{2}-6w-7 ga -5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-5w^{2}+30w+35-\left(6w+6\right)=-7
w+1 ga 6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-5w^{2}+30w+35-6w-6=-7
6w+6 teskarisini topish uchun har birining teskarisini toping.
-5w^{2}+24w+35-6=-7
24w ni olish uchun 30w va -6w ni birlashtirish.
-5w^{2}+24w+29=-7
29 olish uchun 35 dan 6 ni ayirish.
-5w^{2}+24w+29+7=0
7 ni ikki tarafga qo’shing.
-5w^{2}+24w+36=0
36 olish uchun 29 va 7'ni qo'shing.
w=\frac{-24±\sqrt{24^{2}-4\left(-5\right)\times 36}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, 24 ni b va 36 ni c bilan almashtiring.
w=\frac{-24±\sqrt{576-4\left(-5\right)\times 36}}{2\left(-5\right)}
24 kvadratini chiqarish.
w=\frac{-24±\sqrt{576+20\times 36}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
w=\frac{-24±\sqrt{576+720}}{2\left(-5\right)}
20 ni 36 marotabaga ko'paytirish.
w=\frac{-24±\sqrt{1296}}{2\left(-5\right)}
576 ni 720 ga qo'shish.
w=\frac{-24±36}{2\left(-5\right)}
1296 ning kvadrat ildizini chiqarish.
w=\frac{-24±36}{-10}
2 ni -5 marotabaga ko'paytirish.
w=\frac{12}{-10}
w=\frac{-24±36}{-10} tenglamasini yeching, bunda ± musbat. -24 ni 36 ga qo'shish.
w=-\frac{6}{5}
\frac{12}{-10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
w=-\frac{60}{-10}
w=\frac{-24±36}{-10} tenglamasini yeching, bunda ± manfiy. -24 dan 36 ni ayirish.
w=6
-60 ni -10 ga bo'lish.
w=-\frac{6}{5} w=6
Tenglama yechildi.
\left(w-7\right)\left(w+1\right)\left(-5\right)-\left(w+1\right)\times 6=-7
w qiymati -1,7 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(w-7\right)\left(w+1\right) ga, w-7,\left(w+1\right)\left(w-7\right) ning eng kichik karralisiga ko‘paytiring.
\left(w^{2}-6w-7\right)\left(-5\right)-\left(w+1\right)\times 6=-7
w-7 ga w+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-5w^{2}+30w+35-\left(w+1\right)\times 6=-7
w^{2}-6w-7 ga -5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-5w^{2}+30w+35-\left(6w+6\right)=-7
w+1 ga 6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-5w^{2}+30w+35-6w-6=-7
6w+6 teskarisini topish uchun har birining teskarisini toping.
-5w^{2}+24w+35-6=-7
24w ni olish uchun 30w va -6w ni birlashtirish.
-5w^{2}+24w+29=-7
29 olish uchun 35 dan 6 ni ayirish.
-5w^{2}+24w=-7-29
Ikkala tarafdan 29 ni ayirish.
-5w^{2}+24w=-36
-36 olish uchun -7 dan 29 ni ayirish.
\frac{-5w^{2}+24w}{-5}=-\frac{36}{-5}
Ikki tarafini -5 ga bo‘ling.
w^{2}+\frac{24}{-5}w=-\frac{36}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
w^{2}-\frac{24}{5}w=-\frac{36}{-5}
24 ni -5 ga bo'lish.
w^{2}-\frac{24}{5}w=\frac{36}{5}
-36 ni -5 ga bo'lish.
w^{2}-\frac{24}{5}w+\left(-\frac{12}{5}\right)^{2}=\frac{36}{5}+\left(-\frac{12}{5}\right)^{2}
-\frac{24}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{12}{5} olish uchun. Keyin, -\frac{12}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
w^{2}-\frac{24}{5}w+\frac{144}{25}=\frac{36}{5}+\frac{144}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{12}{5} kvadratini chiqarish.
w^{2}-\frac{24}{5}w+\frac{144}{25}=\frac{324}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{36}{5} ni \frac{144}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(w-\frac{12}{5}\right)^{2}=\frac{324}{25}
w^{2}-\frac{24}{5}w+\frac{144}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(w-\frac{12}{5}\right)^{2}}=\sqrt{\frac{324}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
w-\frac{12}{5}=\frac{18}{5} w-\frac{12}{5}=-\frac{18}{5}
Qisqartirish.
w=6 w=-\frac{6}{5}
\frac{12}{5} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}