t uchun yechish
t=\frac{19}{23}\approx 0,826086957
Baham ko'rish
Klipbordga nusxa olish
-20t+15+4t=7t-4
-5 ga 4t-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-16t+15=7t-4
-16t ni olish uchun -20t va 4t ni birlashtirish.
-16t+15-7t=-4
Ikkala tarafdan 7t ni ayirish.
-23t+15=-4
-23t ni olish uchun -16t va -7t ni birlashtirish.
-23t=-4-15
Ikkala tarafdan 15 ni ayirish.
-23t=-19
-19 olish uchun -4 dan 15 ni ayirish.
t=\frac{-19}{-23}
Ikki tarafini -23 ga bo‘ling.
t=\frac{19}{23}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-19}{-23} kasrini \frac{19}{23} ga soddalashtirish mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}