t uchun yechish
t=\frac{\sqrt{149}}{7}+1\approx 2,743793659
t=-\frac{\sqrt{149}}{7}+1\approx -0,743793659
Baham ko'rish
Klipbordga nusxa olish
-49t^{2}+98t+100=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-98±\sqrt{98^{2}-4\left(-49\right)\times 100}}{2\left(-49\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -49 ni a, 98 ni b va 100 ni c bilan almashtiring.
t=\frac{-98±\sqrt{9604-4\left(-49\right)\times 100}}{2\left(-49\right)}
98 kvadratini chiqarish.
t=\frac{-98±\sqrt{9604+196\times 100}}{2\left(-49\right)}
-4 ni -49 marotabaga ko'paytirish.
t=\frac{-98±\sqrt{9604+19600}}{2\left(-49\right)}
196 ni 100 marotabaga ko'paytirish.
t=\frac{-98±\sqrt{29204}}{2\left(-49\right)}
9604 ni 19600 ga qo'shish.
t=\frac{-98±14\sqrt{149}}{2\left(-49\right)}
29204 ning kvadrat ildizini chiqarish.
t=\frac{-98±14\sqrt{149}}{-98}
2 ni -49 marotabaga ko'paytirish.
t=\frac{14\sqrt{149}-98}{-98}
t=\frac{-98±14\sqrt{149}}{-98} tenglamasini yeching, bunda ± musbat. -98 ni 14\sqrt{149} ga qo'shish.
t=-\frac{\sqrt{149}}{7}+1
-98+14\sqrt{149} ni -98 ga bo'lish.
t=\frac{-14\sqrt{149}-98}{-98}
t=\frac{-98±14\sqrt{149}}{-98} tenglamasini yeching, bunda ± manfiy. -98 dan 14\sqrt{149} ni ayirish.
t=\frac{\sqrt{149}}{7}+1
-98-14\sqrt{149} ni -98 ga bo'lish.
t=-\frac{\sqrt{149}}{7}+1 t=\frac{\sqrt{149}}{7}+1
Tenglama yechildi.
-49t^{2}+98t+100=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-49t^{2}+98t+100-100=-100
Tenglamaning ikkala tarafidan 100 ni ayirish.
-49t^{2}+98t=-100
O‘zidan 100 ayirilsa 0 qoladi.
\frac{-49t^{2}+98t}{-49}=-\frac{100}{-49}
Ikki tarafini -49 ga bo‘ling.
t^{2}+\frac{98}{-49}t=-\frac{100}{-49}
-49 ga bo'lish -49 ga ko'paytirishni bekor qiladi.
t^{2}-2t=-\frac{100}{-49}
98 ni -49 ga bo'lish.
t^{2}-2t=\frac{100}{49}
-100 ni -49 ga bo'lish.
t^{2}-2t+1=\frac{100}{49}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-2t+1=\frac{149}{49}
\frac{100}{49} ni 1 ga qo'shish.
\left(t-1\right)^{2}=\frac{149}{49}
t^{2}-2t+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-1\right)^{2}}=\sqrt{\frac{149}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-1=\frac{\sqrt{149}}{7} t-1=-\frac{\sqrt{149}}{7}
Qisqartirish.
t=\frac{\sqrt{149}}{7}+1 t=-\frac{\sqrt{149}}{7}+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}