Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-49t^{2}+2t-10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-2±\sqrt{2^{2}-4\left(-49\right)\left(-10\right)}}{2\left(-49\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -49 ni a, 2 ni b va -10 ni c bilan almashtiring.
t=\frac{-2±\sqrt{4-4\left(-49\right)\left(-10\right)}}{2\left(-49\right)}
2 kvadratini chiqarish.
t=\frac{-2±\sqrt{4+196\left(-10\right)}}{2\left(-49\right)}
-4 ni -49 marotabaga ko'paytirish.
t=\frac{-2±\sqrt{4-1960}}{2\left(-49\right)}
196 ni -10 marotabaga ko'paytirish.
t=\frac{-2±\sqrt{-1956}}{2\left(-49\right)}
4 ni -1960 ga qo'shish.
t=\frac{-2±2\sqrt{489}i}{2\left(-49\right)}
-1956 ning kvadrat ildizini chiqarish.
t=\frac{-2±2\sqrt{489}i}{-98}
2 ni -49 marotabaga ko'paytirish.
t=\frac{-2+2\sqrt{489}i}{-98}
t=\frac{-2±2\sqrt{489}i}{-98} tenglamasini yeching, bunda ± musbat. -2 ni 2i\sqrt{489} ga qo'shish.
t=\frac{-\sqrt{489}i+1}{49}
-2+2i\sqrt{489} ni -98 ga bo'lish.
t=\frac{-2\sqrt{489}i-2}{-98}
t=\frac{-2±2\sqrt{489}i}{-98} tenglamasini yeching, bunda ± manfiy. -2 dan 2i\sqrt{489} ni ayirish.
t=\frac{1+\sqrt{489}i}{49}
-2-2i\sqrt{489} ni -98 ga bo'lish.
t=\frac{-\sqrt{489}i+1}{49} t=\frac{1+\sqrt{489}i}{49}
Tenglama yechildi.
-49t^{2}+2t-10=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-49t^{2}+2t-10-\left(-10\right)=-\left(-10\right)
10 ni tenglamaning ikkala tarafiga qo'shish.
-49t^{2}+2t=-\left(-10\right)
O‘zidan -10 ayirilsa 0 qoladi.
-49t^{2}+2t=10
0 dan -10 ni ayirish.
\frac{-49t^{2}+2t}{-49}=\frac{10}{-49}
Ikki tarafini -49 ga bo‘ling.
t^{2}+\frac{2}{-49}t=\frac{10}{-49}
-49 ga bo'lish -49 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{2}{49}t=\frac{10}{-49}
2 ni -49 ga bo'lish.
t^{2}-\frac{2}{49}t=-\frac{10}{49}
10 ni -49 ga bo'lish.
t^{2}-\frac{2}{49}t+\left(-\frac{1}{49}\right)^{2}=-\frac{10}{49}+\left(-\frac{1}{49}\right)^{2}
-\frac{2}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{49} olish uchun. Keyin, -\frac{1}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{2}{49}t+\frac{1}{2401}=-\frac{10}{49}+\frac{1}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{49} kvadratini chiqarish.
t^{2}-\frac{2}{49}t+\frac{1}{2401}=-\frac{489}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{10}{49} ni \frac{1}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(t-\frac{1}{49}\right)^{2}=-\frac{489}{2401}
t^{2}-\frac{2}{49}t+\frac{1}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{1}{49}\right)^{2}}=\sqrt{-\frac{489}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{1}{49}=\frac{\sqrt{489}i}{49} t-\frac{1}{49}=-\frac{\sqrt{489}i}{49}
Qisqartirish.
t=\frac{1+\sqrt{489}i}{49} t=\frac{-\sqrt{489}i+1}{49}
\frac{1}{49} ni tenglamaning ikkala tarafiga qo'shish.