Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-4x^{2}-8x+4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-4\right)\times 4}}{2\left(-4\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-4\right)\times 4}}{2\left(-4\right)}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+16\times 4}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64+64}}{2\left(-4\right)}
16 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{128}}{2\left(-4\right)}
64 ni 64 ga qo'shish.
x=\frac{-\left(-8\right)±8\sqrt{2}}{2\left(-4\right)}
128 ning kvadrat ildizini chiqarish.
x=\frac{8±8\sqrt{2}}{2\left(-4\right)}
-8 ning teskarisi 8 ga teng.
x=\frac{8±8\sqrt{2}}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{8\sqrt{2}+8}{-8}
x=\frac{8±8\sqrt{2}}{-8} tenglamasini yeching, bunda ± musbat. 8 ni 8\sqrt{2} ga qo'shish.
x=-\left(\sqrt{2}+1\right)
8+8\sqrt{2} ni -8 ga bo'lish.
x=\frac{8-8\sqrt{2}}{-8}
x=\frac{8±8\sqrt{2}}{-8} tenglamasini yeching, bunda ± manfiy. 8 dan 8\sqrt{2} ni ayirish.
x=\sqrt{2}-1
8-8\sqrt{2} ni -8 ga bo'lish.
-4x^{2}-8x+4=-4\left(x-\left(-\left(\sqrt{2}+1\right)\right)\right)\left(x-\left(\sqrt{2}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\left(1+\sqrt{2}\right) ga va x_{2} uchun -1+\sqrt{2} ga bo‘ling.