Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-4x^{2}+16x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-16±\sqrt{16^{2}-4\left(-4\right)\left(-2\right)}}{2\left(-4\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-16±\sqrt{256-4\left(-4\right)\left(-2\right)}}{2\left(-4\right)}
16 kvadratini chiqarish.
x=\frac{-16±\sqrt{256+16\left(-2\right)}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{256-32}}{2\left(-4\right)}
16 ni -2 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{224}}{2\left(-4\right)}
256 ni -32 ga qo'shish.
x=\frac{-16±4\sqrt{14}}{2\left(-4\right)}
224 ning kvadrat ildizini chiqarish.
x=\frac{-16±4\sqrt{14}}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{4\sqrt{14}-16}{-8}
x=\frac{-16±4\sqrt{14}}{-8} tenglamasini yeching, bunda ± musbat. -16 ni 4\sqrt{14} ga qo'shish.
x=-\frac{\sqrt{14}}{2}+2
-16+4\sqrt{14} ni -8 ga bo'lish.
x=\frac{-4\sqrt{14}-16}{-8}
x=\frac{-16±4\sqrt{14}}{-8} tenglamasini yeching, bunda ± manfiy. -16 dan 4\sqrt{14} ni ayirish.
x=\frac{\sqrt{14}}{2}+2
-16-4\sqrt{14} ni -8 ga bo'lish.
-4x^{2}+16x-2=-4\left(x-\left(-\frac{\sqrt{14}}{2}+2\right)\right)\left(x-\left(\frac{\sqrt{14}}{2}+2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 2-\frac{\sqrt{14}}{2} ga va x_{2} uchun 2+\frac{\sqrt{14}}{2} ga bo‘ling.