Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-4x^{2}+133x-63=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-133±\sqrt{133^{2}-4\left(-4\right)\left(-63\right)}}{2\left(-4\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-133±\sqrt{17689-4\left(-4\right)\left(-63\right)}}{2\left(-4\right)}
133 kvadratini chiqarish.
x=\frac{-133±\sqrt{17689+16\left(-63\right)}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-133±\sqrt{17689-1008}}{2\left(-4\right)}
16 ni -63 marotabaga ko'paytirish.
x=\frac{-133±\sqrt{16681}}{2\left(-4\right)}
17689 ni -1008 ga qo'shish.
x=\frac{-133±\sqrt{16681}}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{\sqrt{16681}-133}{-8}
x=\frac{-133±\sqrt{16681}}{-8} tenglamasini yeching, bunda ± musbat. -133 ni \sqrt{16681} ga qo'shish.
x=\frac{133-\sqrt{16681}}{8}
-133+\sqrt{16681} ni -8 ga bo'lish.
x=\frac{-\sqrt{16681}-133}{-8}
x=\frac{-133±\sqrt{16681}}{-8} tenglamasini yeching, bunda ± manfiy. -133 dan \sqrt{16681} ni ayirish.
x=\frac{\sqrt{16681}+133}{8}
-133-\sqrt{16681} ni -8 ga bo'lish.
-4x^{2}+133x-63=-4\left(x-\frac{133-\sqrt{16681}}{8}\right)\left(x-\frac{\sqrt{16681}+133}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{133-\sqrt{16681}}{8} ga va x_{2} uchun \frac{133+\sqrt{16681}}{8} ga bo‘ling.