Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-4a^{2}-5a+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-4\right)}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, -5 ni b va 1 ni c bilan almashtiring.
a=\frac{-\left(-5\right)±\sqrt{25-4\left(-4\right)}}{2\left(-4\right)}
-5 kvadratini chiqarish.
a=\frac{-\left(-5\right)±\sqrt{25+16}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
a=\frac{-\left(-5\right)±\sqrt{41}}{2\left(-4\right)}
25 ni 16 ga qo'shish.
a=\frac{5±\sqrt{41}}{2\left(-4\right)}
-5 ning teskarisi 5 ga teng.
a=\frac{5±\sqrt{41}}{-8}
2 ni -4 marotabaga ko'paytirish.
a=\frac{\sqrt{41}+5}{-8}
a=\frac{5±\sqrt{41}}{-8} tenglamasini yeching, bunda ± musbat. 5 ni \sqrt{41} ga qo'shish.
a=\frac{-\sqrt{41}-5}{8}
5+\sqrt{41} ni -8 ga bo'lish.
a=\frac{5-\sqrt{41}}{-8}
a=\frac{5±\sqrt{41}}{-8} tenglamasini yeching, bunda ± manfiy. 5 dan \sqrt{41} ni ayirish.
a=\frac{\sqrt{41}-5}{8}
5-\sqrt{41} ni -8 ga bo'lish.
a=\frac{-\sqrt{41}-5}{8} a=\frac{\sqrt{41}-5}{8}
Tenglama yechildi.
-4a^{2}-5a+1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-4a^{2}-5a+1-1=-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
-4a^{2}-5a=-1
O‘zidan 1 ayirilsa 0 qoladi.
\frac{-4a^{2}-5a}{-4}=-\frac{1}{-4}
Ikki tarafini -4 ga bo‘ling.
a^{2}+\left(-\frac{5}{-4}\right)a=-\frac{1}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
a^{2}+\frac{5}{4}a=-\frac{1}{-4}
-5 ni -4 ga bo'lish.
a^{2}+\frac{5}{4}a=\frac{1}{4}
-1 ni -4 ga bo'lish.
a^{2}+\frac{5}{4}a+\left(\frac{5}{8}\right)^{2}=\frac{1}{4}+\left(\frac{5}{8}\right)^{2}
\frac{5}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{8} olish uchun. Keyin, \frac{5}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+\frac{5}{4}a+\frac{25}{64}=\frac{1}{4}+\frac{25}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{8} kvadratini chiqarish.
a^{2}+\frac{5}{4}a+\frac{25}{64}=\frac{41}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{4} ni \frac{25}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(a+\frac{5}{8}\right)^{2}=\frac{41}{64}
a^{2}+\frac{5}{4}a+\frac{25}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+\frac{5}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+\frac{5}{8}=\frac{\sqrt{41}}{8} a+\frac{5}{8}=-\frac{\sqrt{41}}{8}
Qisqartirish.
a=\frac{\sqrt{41}-5}{8} a=\frac{-\sqrt{41}-5}{8}
Tenglamaning ikkala tarafidan \frac{5}{8} ni ayirish.