Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-4=n\left(18\left(n-1\right)-2\right)
18 hosil qilish uchun 2 va 9 ni ko'paytirish.
-4=n\left(18n-18-2\right)
18 ga n-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-4=n\left(18n-20\right)
-20 olish uchun -18 dan 2 ni ayirish.
-4=18n^{2}-20n
n ga 18n-20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
18n^{2}-20n=-4
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
18n^{2}-20n+4=0
4 ni ikki tarafga qo’shing.
n=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 18\times 4}}{2\times 18}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 18 ni a, -20 ni b va 4 ni c bilan almashtiring.
n=\frac{-\left(-20\right)±\sqrt{400-4\times 18\times 4}}{2\times 18}
-20 kvadratini chiqarish.
n=\frac{-\left(-20\right)±\sqrt{400-72\times 4}}{2\times 18}
-4 ni 18 marotabaga ko'paytirish.
n=\frac{-\left(-20\right)±\sqrt{400-288}}{2\times 18}
-72 ni 4 marotabaga ko'paytirish.
n=\frac{-\left(-20\right)±\sqrt{112}}{2\times 18}
400 ni -288 ga qo'shish.
n=\frac{-\left(-20\right)±4\sqrt{7}}{2\times 18}
112 ning kvadrat ildizini chiqarish.
n=\frac{20±4\sqrt{7}}{2\times 18}
-20 ning teskarisi 20 ga teng.
n=\frac{20±4\sqrt{7}}{36}
2 ni 18 marotabaga ko'paytirish.
n=\frac{4\sqrt{7}+20}{36}
n=\frac{20±4\sqrt{7}}{36} tenglamasini yeching, bunda ± musbat. 20 ni 4\sqrt{7} ga qo'shish.
n=\frac{\sqrt{7}+5}{9}
20+4\sqrt{7} ni 36 ga bo'lish.
n=\frac{20-4\sqrt{7}}{36}
n=\frac{20±4\sqrt{7}}{36} tenglamasini yeching, bunda ± manfiy. 20 dan 4\sqrt{7} ni ayirish.
n=\frac{5-\sqrt{7}}{9}
20-4\sqrt{7} ni 36 ga bo'lish.
n=\frac{\sqrt{7}+5}{9} n=\frac{5-\sqrt{7}}{9}
Tenglama yechildi.
-4=n\left(18\left(n-1\right)-2\right)
18 hosil qilish uchun 2 va 9 ni ko'paytirish.
-4=n\left(18n-18-2\right)
18 ga n-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-4=n\left(18n-20\right)
-20 olish uchun -18 dan 2 ni ayirish.
-4=18n^{2}-20n
n ga 18n-20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
18n^{2}-20n=-4
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{18n^{2}-20n}{18}=-\frac{4}{18}
Ikki tarafini 18 ga bo‘ling.
n^{2}+\left(-\frac{20}{18}\right)n=-\frac{4}{18}
18 ga bo'lish 18 ga ko'paytirishni bekor qiladi.
n^{2}-\frac{10}{9}n=-\frac{4}{18}
\frac{-20}{18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n^{2}-\frac{10}{9}n=-\frac{2}{9}
\frac{-4}{18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n^{2}-\frac{10}{9}n+\left(-\frac{5}{9}\right)^{2}=-\frac{2}{9}+\left(-\frac{5}{9}\right)^{2}
-\frac{10}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{9} olish uchun. Keyin, -\frac{5}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-\frac{10}{9}n+\frac{25}{81}=-\frac{2}{9}+\frac{25}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{9} kvadratini chiqarish.
n^{2}-\frac{10}{9}n+\frac{25}{81}=\frac{7}{81}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{9} ni \frac{25}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(n-\frac{5}{9}\right)^{2}=\frac{7}{81}
n^{2}-\frac{10}{9}n+\frac{25}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{5}{9}\right)^{2}}=\sqrt{\frac{7}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{5}{9}=\frac{\sqrt{7}}{9} n-\frac{5}{9}=-\frac{\sqrt{7}}{9}
Qisqartirish.
n=\frac{\sqrt{7}+5}{9} n=\frac{5-\sqrt{7}}{9}
\frac{5}{9} ni tenglamaning ikkala tarafiga qo'shish.