a uchun yechish
a=-\frac{1}{4}=-0,25
Baham ko'rish
Klipbordga nusxa olish
-16a=64a^{2}
a qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4a ga ko'paytirish.
-16a-64a^{2}=0
Ikkala tarafdan 64a^{2} ni ayirish.
a\left(-16-64a\right)=0
a omili.
a=0 a=-\frac{1}{4}
Tenglamani yechish uchun a=0 va -16-64a=0 ni yeching.
a=-\frac{1}{4}
a qiymati 0 teng bo‘lmaydi.
-16a=64a^{2}
a qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4a ga ko'paytirish.
-16a-64a^{2}=0
Ikkala tarafdan 64a^{2} ni ayirish.
-64a^{2}-16a=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}}}{2\left(-64\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -64 ni a, -16 ni b va 0 ni c bilan almashtiring.
a=\frac{-\left(-16\right)±16}{2\left(-64\right)}
\left(-16\right)^{2} ning kvadrat ildizini chiqarish.
a=\frac{16±16}{2\left(-64\right)}
-16 ning teskarisi 16 ga teng.
a=\frac{16±16}{-128}
2 ni -64 marotabaga ko'paytirish.
a=\frac{32}{-128}
a=\frac{16±16}{-128} tenglamasini yeching, bunda ± musbat. 16 ni 16 ga qo'shish.
a=-\frac{1}{4}
\frac{32}{-128} ulushini 32 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
a=\frac{0}{-128}
a=\frac{16±16}{-128} tenglamasini yeching, bunda ± manfiy. 16 dan 16 ni ayirish.
a=0
0 ni -128 ga bo'lish.
a=-\frac{1}{4} a=0
Tenglama yechildi.
a=-\frac{1}{4}
a qiymati 0 teng bo‘lmaydi.
-16a=64a^{2}
a qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4a ga ko'paytirish.
-16a-64a^{2}=0
Ikkala tarafdan 64a^{2} ni ayirish.
-64a^{2}-16a=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-64a^{2}-16a}{-64}=\frac{0}{-64}
Ikki tarafini -64 ga bo‘ling.
a^{2}+\left(-\frac{16}{-64}\right)a=\frac{0}{-64}
-64 ga bo'lish -64 ga ko'paytirishni bekor qiladi.
a^{2}+\frac{1}{4}a=\frac{0}{-64}
\frac{-16}{-64} ulushini 16 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
a^{2}+\frac{1}{4}a=0
0 ni -64 ga bo'lish.
a^{2}+\frac{1}{4}a+\left(\frac{1}{8}\right)^{2}=\left(\frac{1}{8}\right)^{2}
\frac{1}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{8} olish uchun. Keyin, \frac{1}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+\frac{1}{4}a+\frac{1}{64}=\frac{1}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{8} kvadratini chiqarish.
\left(a+\frac{1}{8}\right)^{2}=\frac{1}{64}
a^{2}+\frac{1}{4}a+\frac{1}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+\frac{1}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+\frac{1}{8}=\frac{1}{8} a+\frac{1}{8}=-\frac{1}{8}
Qisqartirish.
a=0 a=-\frac{1}{4}
Tenglamaning ikkala tarafidan \frac{1}{8} ni ayirish.
a=-\frac{1}{4}
a qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}