Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-375=x^{2}+2x+1-4
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
-375=x^{2}+2x-3
-3 olish uchun 1 dan 4 ni ayirish.
x^{2}+2x-3=-375
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+2x-3+375=0
375 ni ikki tarafga qo’shing.
x^{2}+2x+372=0
372 olish uchun -3 va 375'ni qo'shing.
x=\frac{-2±\sqrt{2^{2}-4\times 372}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va 372 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times 372}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-1488}}{2}
-4 ni 372 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{-1484}}{2}
4 ni -1488 ga qo'shish.
x=\frac{-2±2\sqrt{371}i}{2}
-1484 ning kvadrat ildizini chiqarish.
x=\frac{-2+2\sqrt{371}i}{2}
x=\frac{-2±2\sqrt{371}i}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2i\sqrt{371} ga qo'shish.
x=-1+\sqrt{371}i
-2+2i\sqrt{371} ni 2 ga bo'lish.
x=\frac{-2\sqrt{371}i-2}{2}
x=\frac{-2±2\sqrt{371}i}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2i\sqrt{371} ni ayirish.
x=-\sqrt{371}i-1
-2-2i\sqrt{371} ni 2 ga bo'lish.
x=-1+\sqrt{371}i x=-\sqrt{371}i-1
Tenglama yechildi.
-375=x^{2}+2x+1-4
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
-375=x^{2}+2x-3
-3 olish uchun 1 dan 4 ni ayirish.
x^{2}+2x-3=-375
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+2x=-375+3
3 ni ikki tarafga qo’shing.
x^{2}+2x=-372
-372 olish uchun -375 va 3'ni qo'shing.
x^{2}+2x+1^{2}=-372+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=-372+1
1 kvadratini chiqarish.
x^{2}+2x+1=-371
-372 ni 1 ga qo'shish.
\left(x+1\right)^{2}=-371
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-371}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{371}i x+1=-\sqrt{371}i
Qisqartirish.
x=-1+\sqrt{371}i x=-\sqrt{371}i-1
Tenglamaning ikkala tarafidan 1 ni ayirish.