Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1111t-49t^{2}=-3634
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
1111t-49t^{2}+3634=0
3634 ni ikki tarafga qo’shing.
-49t^{2}+1111t+3634=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-1111±\sqrt{1111^{2}-4\left(-49\right)\times 3634}}{2\left(-49\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -49 ni a, 1111 ni b va 3634 ni c bilan almashtiring.
t=\frac{-1111±\sqrt{1234321-4\left(-49\right)\times 3634}}{2\left(-49\right)}
1111 kvadratini chiqarish.
t=\frac{-1111±\sqrt{1234321+196\times 3634}}{2\left(-49\right)}
-4 ni -49 marotabaga ko'paytirish.
t=\frac{-1111±\sqrt{1234321+712264}}{2\left(-49\right)}
196 ni 3634 marotabaga ko'paytirish.
t=\frac{-1111±\sqrt{1946585}}{2\left(-49\right)}
1234321 ni 712264 ga qo'shish.
t=\frac{-1111±\sqrt{1946585}}{-98}
2 ni -49 marotabaga ko'paytirish.
t=\frac{\sqrt{1946585}-1111}{-98}
t=\frac{-1111±\sqrt{1946585}}{-98} tenglamasini yeching, bunda ± musbat. -1111 ni \sqrt{1946585} ga qo'shish.
t=\frac{1111-\sqrt{1946585}}{98}
-1111+\sqrt{1946585} ni -98 ga bo'lish.
t=\frac{-\sqrt{1946585}-1111}{-98}
t=\frac{-1111±\sqrt{1946585}}{-98} tenglamasini yeching, bunda ± manfiy. -1111 dan \sqrt{1946585} ni ayirish.
t=\frac{\sqrt{1946585}+1111}{98}
-1111-\sqrt{1946585} ni -98 ga bo'lish.
t=\frac{1111-\sqrt{1946585}}{98} t=\frac{\sqrt{1946585}+1111}{98}
Tenglama yechildi.
1111t-49t^{2}=-3634
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-49t^{2}+1111t=-3634
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-49t^{2}+1111t}{-49}=-\frac{3634}{-49}
Ikki tarafini -49 ga bo‘ling.
t^{2}+\frac{1111}{-49}t=-\frac{3634}{-49}
-49 ga bo'lish -49 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{1111}{49}t=-\frac{3634}{-49}
1111 ni -49 ga bo'lish.
t^{2}-\frac{1111}{49}t=\frac{3634}{49}
-3634 ni -49 ga bo'lish.
t^{2}-\frac{1111}{49}t+\left(-\frac{1111}{98}\right)^{2}=\frac{3634}{49}+\left(-\frac{1111}{98}\right)^{2}
-\frac{1111}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1111}{98} olish uchun. Keyin, -\frac{1111}{98} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{1111}{49}t+\frac{1234321}{9604}=\frac{3634}{49}+\frac{1234321}{9604}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1111}{98} kvadratini chiqarish.
t^{2}-\frac{1111}{49}t+\frac{1234321}{9604}=\frac{1946585}{9604}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3634}{49} ni \frac{1234321}{9604} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(t-\frac{1111}{98}\right)^{2}=\frac{1946585}{9604}
t^{2}-\frac{1111}{49}t+\frac{1234321}{9604} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{1111}{98}\right)^{2}}=\sqrt{\frac{1946585}{9604}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{1111}{98}=\frac{\sqrt{1946585}}{98} t-\frac{1111}{98}=-\frac{\sqrt{1946585}}{98}
Qisqartirish.
t=\frac{\sqrt{1946585}+1111}{98} t=\frac{1111-\sqrt{1946585}}{98}
\frac{1111}{98} ni tenglamaning ikkala tarafiga qo'shish.