x, y uchun yechish
x=-4
y=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
y+5x=-17
Ikkinchi tenglamani yeching. 5x ni ikki tarafga qo’shing.
-3x-3y=3,5x+y=-17
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
-3x-3y=3
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
-3x=3y+3
3y ni tenglamaning ikkala tarafiga qo'shish.
x=-\frac{1}{3}\left(3y+3\right)
Ikki tarafini -3 ga bo‘ling.
x=-y-1
-\frac{1}{3} ni 3+3y marotabaga ko'paytirish.
5\left(-y-1\right)+y=-17
-y-1 ni x uchun boshqa tenglamada almashtirish, 5x+y=-17.
-5y-5+y=-17
5 ni -y-1 marotabaga ko'paytirish.
-4y-5=-17
-5y ni y ga qo'shish.
-4y=-12
5 ni tenglamaning ikkala tarafiga qo'shish.
y=3
Ikki tarafini -4 ga bo‘ling.
x=-3-1
3 ni y uchun x=-y-1 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-4
-1 ni -3 ga qo'shish.
x=-4,y=3
Tizim hal qilindi.
y+5x=-17
Ikkinchi tenglamani yeching. 5x ni ikki tarafga qo’shing.
-3x-3y=3,5x+y=-17
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}-3&-3\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-17\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}-3&-3\\5&1\end{matrix}\right))\left(\begin{matrix}-3&-3\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-3\\5&1\end{matrix}\right))\left(\begin{matrix}3\\-17\end{matrix}\right)
\left(\begin{matrix}-3&-3\\5&1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-3\\5&1\end{matrix}\right))\left(\begin{matrix}3\\-17\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-3\\5&1\end{matrix}\right))\left(\begin{matrix}3\\-17\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-3-\left(-3\times 5\right)}&-\frac{-3}{-3-\left(-3\times 5\right)}\\-\frac{5}{-3-\left(-3\times 5\right)}&-\frac{3}{-3-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}3\\-17\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{4}\\-\frac{5}{12}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}3\\-17\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 3+\frac{1}{4}\left(-17\right)\\-\frac{5}{12}\times 3-\frac{1}{4}\left(-17\right)\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=-4,y=3
x va y matritsa elementlarini chiqarib olish.
y+5x=-17
Ikkinchi tenglamani yeching. 5x ni ikki tarafga qo’shing.
-3x-3y=3,5x+y=-17
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
5\left(-3\right)x+5\left(-3\right)y=5\times 3,-3\times 5x-3y=-3\left(-17\right)
-3x va 5x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 5 ga va ikkinchining har bir tarafidagi barcha shartlarni -3 ga ko'paytiring.
-15x-15y=15,-15x-3y=51
Qisqartirish.
-15x+15x-15y+3y=15-51
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali -15x-15y=15 dan -15x-3y=51 ni ayirish.
-15y+3y=15-51
-15x ni 15x ga qo'shish. -15x va 15x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-12y=15-51
-15y ni 3y ga qo'shish.
-12y=-36
15 ni -51 ga qo'shish.
y=3
Ikki tarafini -12 ga bo‘ling.
5x+3=-17
3 ni y uchun 5x+y=-17 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
5x=-20
Tenglamaning ikkala tarafidan 3 ni ayirish.
x=-4
Ikki tarafini 5 ga bo‘ling.
x=-4,y=3
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}