Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-3x^{2}-3x+11-2x=0
Ikkala tarafdan 2x ni ayirish.
-3x^{2}-5x+11=0
-5x ni olish uchun -3x va -2x ni birlashtirish.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-3\right)\times 11}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -5 ni b va 11 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-3\right)\times 11}}{2\left(-3\right)}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25+12\times 11}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25+132}}{2\left(-3\right)}
12 ni 11 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{157}}{2\left(-3\right)}
25 ni 132 ga qo'shish.
x=\frac{5±\sqrt{157}}{2\left(-3\right)}
-5 ning teskarisi 5 ga teng.
x=\frac{5±\sqrt{157}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{\sqrt{157}+5}{-6}
x=\frac{5±\sqrt{157}}{-6} tenglamasini yeching, bunda ± musbat. 5 ni \sqrt{157} ga qo'shish.
x=\frac{-\sqrt{157}-5}{6}
5+\sqrt{157} ni -6 ga bo'lish.
x=\frac{5-\sqrt{157}}{-6}
x=\frac{5±\sqrt{157}}{-6} tenglamasini yeching, bunda ± manfiy. 5 dan \sqrt{157} ni ayirish.
x=\frac{\sqrt{157}-5}{6}
5-\sqrt{157} ni -6 ga bo'lish.
x=\frac{-\sqrt{157}-5}{6} x=\frac{\sqrt{157}-5}{6}
Tenglama yechildi.
-3x^{2}-3x+11-2x=0
Ikkala tarafdan 2x ni ayirish.
-3x^{2}-5x+11=0
-5x ni olish uchun -3x va -2x ni birlashtirish.
-3x^{2}-5x=-11
Ikkala tarafdan 11 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{-3x^{2}-5x}{-3}=-\frac{11}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{5}{-3}\right)x=-\frac{11}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{3}x=-\frac{11}{-3}
-5 ni -3 ga bo'lish.
x^{2}+\frac{5}{3}x=\frac{11}{3}
-11 ni -3 ga bo'lish.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=\frac{11}{3}+\left(\frac{5}{6}\right)^{2}
\frac{5}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{6} olish uchun. Keyin, \frac{5}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{11}{3}+\frac{25}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{6} kvadratini chiqarish.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{157}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{11}{3} ni \frac{25}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{6}\right)^{2}=\frac{157}{36}
x^{2}+\frac{5}{3}x+\frac{25}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{157}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{6}=\frac{\sqrt{157}}{6} x+\frac{5}{6}=-\frac{\sqrt{157}}{6}
Qisqartirish.
x=\frac{\sqrt{157}-5}{6} x=\frac{-\sqrt{157}-5}{6}
Tenglamaning ikkala tarafidan \frac{5}{6} ni ayirish.