Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-3x^{2}-24x-51=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-3\right)\left(-51\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -24 ni b va -51 ni c bilan almashtiring.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-3\right)\left(-51\right)}}{2\left(-3\right)}
-24 kvadratini chiqarish.
x=\frac{-\left(-24\right)±\sqrt{576+12\left(-51\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{576-612}}{2\left(-3\right)}
12 ni -51 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{-36}}{2\left(-3\right)}
576 ni -612 ga qo'shish.
x=\frac{-\left(-24\right)±6i}{2\left(-3\right)}
-36 ning kvadrat ildizini chiqarish.
x=\frac{24±6i}{2\left(-3\right)}
-24 ning teskarisi 24 ga teng.
x=\frac{24±6i}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{24+6i}{-6}
x=\frac{24±6i}{-6} tenglamasini yeching, bunda ± musbat. 24 ni 6i ga qo'shish.
x=-4-i
24+6i ni -6 ga bo'lish.
x=\frac{24-6i}{-6}
x=\frac{24±6i}{-6} tenglamasini yeching, bunda ± manfiy. 24 dan 6i ni ayirish.
x=-4+i
24-6i ni -6 ga bo'lish.
x=-4-i x=-4+i
Tenglama yechildi.
-3x^{2}-24x-51=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-3x^{2}-24x-51-\left(-51\right)=-\left(-51\right)
51 ni tenglamaning ikkala tarafiga qo'shish.
-3x^{2}-24x=-\left(-51\right)
O‘zidan -51 ayirilsa 0 qoladi.
-3x^{2}-24x=51
0 dan -51 ni ayirish.
\frac{-3x^{2}-24x}{-3}=\frac{51}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{24}{-3}\right)x=\frac{51}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+8x=\frac{51}{-3}
-24 ni -3 ga bo'lish.
x^{2}+8x=-17
51 ni -3 ga bo'lish.
x^{2}+8x+4^{2}=-17+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=-17+16
4 kvadratini chiqarish.
x^{2}+8x+16=-1
-17 ni 16 ga qo'shish.
\left(x+4\right)^{2}=-1
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{-1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=i x+4=-i
Qisqartirish.
x=-4+i x=-4-i
Tenglamaning ikkala tarafidan 4 ni ayirish.