x uchun yechish (complex solution)
x=-4+i
x=-4-i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-3x^{2}-24x-51=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-3\right)\left(-51\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -24 ni b va -51 ni c bilan almashtiring.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-3\right)\left(-51\right)}}{2\left(-3\right)}
-24 kvadratini chiqarish.
x=\frac{-\left(-24\right)±\sqrt{576+12\left(-51\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{576-612}}{2\left(-3\right)}
12 ni -51 marotabaga ko'paytirish.
x=\frac{-\left(-24\right)±\sqrt{-36}}{2\left(-3\right)}
576 ni -612 ga qo'shish.
x=\frac{-\left(-24\right)±6i}{2\left(-3\right)}
-36 ning kvadrat ildizini chiqarish.
x=\frac{24±6i}{2\left(-3\right)}
-24 ning teskarisi 24 ga teng.
x=\frac{24±6i}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{24+6i}{-6}
x=\frac{24±6i}{-6} tenglamasini yeching, bunda ± musbat. 24 ni 6i ga qo'shish.
x=-4-i
24+6i ni -6 ga bo'lish.
x=\frac{24-6i}{-6}
x=\frac{24±6i}{-6} tenglamasini yeching, bunda ± manfiy. 24 dan 6i ni ayirish.
x=-4+i
24-6i ni -6 ga bo'lish.
x=-4-i x=-4+i
Tenglama yechildi.
-3x^{2}-24x-51=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-3x^{2}-24x-51-\left(-51\right)=-\left(-51\right)
51 ni tenglamaning ikkala tarafiga qo'shish.
-3x^{2}-24x=-\left(-51\right)
O‘zidan -51 ayirilsa 0 qoladi.
-3x^{2}-24x=51
0 dan -51 ni ayirish.
\frac{-3x^{2}-24x}{-3}=\frac{51}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{24}{-3}\right)x=\frac{51}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+8x=\frac{51}{-3}
-24 ni -3 ga bo'lish.
x^{2}+8x=-17
51 ni -3 ga bo'lish.
x^{2}+8x+4^{2}=-17+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=-17+16
4 kvadratini chiqarish.
x^{2}+8x+16=-1
-17 ni 16 ga qo'shish.
\left(x+4\right)^{2}=-1
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{-1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=i x+4=-i
Qisqartirish.
x=-4+i x=-4-i
Tenglamaning ikkala tarafidan 4 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}