x uchun yechish (complex solution)
x=\frac{-\sqrt{23}i+11}{6}\approx 1,833333333-0,799305254i
x=\frac{11+\sqrt{23}i}{6}\approx 1,833333333+0,799305254i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-3x^{2}+11x=12
11x ni ikki tarafga qo’shing.
-3x^{2}+11x-12=0
Ikkala tarafdan 12 ni ayirish.
x=\frac{-11±\sqrt{11^{2}-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 11 ni b va -12 ni c bilan almashtiring.
x=\frac{-11±\sqrt{121-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
11 kvadratini chiqarish.
x=\frac{-11±\sqrt{121+12\left(-12\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{121-144}}{2\left(-3\right)}
12 ni -12 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{-23}}{2\left(-3\right)}
121 ni -144 ga qo'shish.
x=\frac{-11±\sqrt{23}i}{2\left(-3\right)}
-23 ning kvadrat ildizini chiqarish.
x=\frac{-11±\sqrt{23}i}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{-11+\sqrt{23}i}{-6}
x=\frac{-11±\sqrt{23}i}{-6} tenglamasini yeching, bunda ± musbat. -11 ni i\sqrt{23} ga qo'shish.
x=\frac{-\sqrt{23}i+11}{6}
-11+i\sqrt{23} ni -6 ga bo'lish.
x=\frac{-\sqrt{23}i-11}{-6}
x=\frac{-11±\sqrt{23}i}{-6} tenglamasini yeching, bunda ± manfiy. -11 dan i\sqrt{23} ni ayirish.
x=\frac{11+\sqrt{23}i}{6}
-11-i\sqrt{23} ni -6 ga bo'lish.
x=\frac{-\sqrt{23}i+11}{6} x=\frac{11+\sqrt{23}i}{6}
Tenglama yechildi.
-3x^{2}+11x=12
11x ni ikki tarafga qo’shing.
\frac{-3x^{2}+11x}{-3}=\frac{12}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{11}{-3}x=\frac{12}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{3}x=\frac{12}{-3}
11 ni -3 ga bo'lish.
x^{2}-\frac{11}{3}x=-4
12 ni -3 ga bo'lish.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=-4+\left(-\frac{11}{6}\right)^{2}
-\frac{11}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{6} olish uchun. Keyin, -\frac{11}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{3}x+\frac{121}{36}=-4+\frac{121}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{6} kvadratini chiqarish.
x^{2}-\frac{11}{3}x+\frac{121}{36}=-\frac{23}{36}
-4 ni \frac{121}{36} ga qo'shish.
\left(x-\frac{11}{6}\right)^{2}=-\frac{23}{36}
x^{2}-\frac{11}{3}x+\frac{121}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{6}=\frac{\sqrt{23}i}{6} x-\frac{11}{6}=-\frac{\sqrt{23}i}{6}
Qisqartirish.
x=\frac{11+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+11}{6}
\frac{11}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}