Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-3x^{2}+4x+12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 4 ni b va 12 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-3\right)\times 12}}{2\left(-3\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+12\times 12}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+144}}{2\left(-3\right)}
12 ni 12 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{160}}{2\left(-3\right)}
16 ni 144 ga qo'shish.
x=\frac{-4±4\sqrt{10}}{2\left(-3\right)}
160 ning kvadrat ildizini chiqarish.
x=\frac{-4±4\sqrt{10}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{4\sqrt{10}-4}{-6}
x=\frac{-4±4\sqrt{10}}{-6} tenglamasini yeching, bunda ± musbat. -4 ni 4\sqrt{10} ga qo'shish.
x=\frac{2-2\sqrt{10}}{3}
-4+4\sqrt{10} ni -6 ga bo'lish.
x=\frac{-4\sqrt{10}-4}{-6}
x=\frac{-4±4\sqrt{10}}{-6} tenglamasini yeching, bunda ± manfiy. -4 dan 4\sqrt{10} ni ayirish.
x=\frac{2\sqrt{10}+2}{3}
-4-4\sqrt{10} ni -6 ga bo'lish.
x=\frac{2-2\sqrt{10}}{3} x=\frac{2\sqrt{10}+2}{3}
Tenglama yechildi.
-3x^{2}+4x+12=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-3x^{2}+4x+12-12=-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
-3x^{2}+4x=-12
O‘zidan 12 ayirilsa 0 qoladi.
\frac{-3x^{2}+4x}{-3}=-\frac{12}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{4}{-3}x=-\frac{12}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{3}x=-\frac{12}{-3}
4 ni -3 ga bo'lish.
x^{2}-\frac{4}{3}x=4
-12 ni -3 ga bo'lish.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=4+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{3} olish uchun. Keyin, -\frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{3}x+\frac{4}{9}=4+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{3} kvadratini chiqarish.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{40}{9}
4 ni \frac{4}{9} ga qo'shish.
\left(x-\frac{2}{3}\right)^{2}=\frac{40}{9}
x^{2}-\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{40}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{3}=\frac{2\sqrt{10}}{3} x-\frac{2}{3}=-\frac{2\sqrt{10}}{3}
Qisqartirish.
x=\frac{2\sqrt{10}+2}{3} x=\frac{2-2\sqrt{10}}{3}
\frac{2}{3} ni tenglamaning ikkala tarafiga qo'shish.