x uchun yechish
x = \frac{2 \sqrt{10} + 2}{3} \approx 2,774851773
x=\frac{2-2\sqrt{10}}{3}\approx -1,44151844
Grafik
Baham ko'rish
Klipbordga nusxa olish
-3x^{2}+4x+12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 4 ni b va 12 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-3\right)\times 12}}{2\left(-3\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+12\times 12}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+144}}{2\left(-3\right)}
12 ni 12 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{160}}{2\left(-3\right)}
16 ni 144 ga qo'shish.
x=\frac{-4±4\sqrt{10}}{2\left(-3\right)}
160 ning kvadrat ildizini chiqarish.
x=\frac{-4±4\sqrt{10}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{4\sqrt{10}-4}{-6}
x=\frac{-4±4\sqrt{10}}{-6} tenglamasini yeching, bunda ± musbat. -4 ni 4\sqrt{10} ga qo'shish.
x=\frac{2-2\sqrt{10}}{3}
-4+4\sqrt{10} ni -6 ga bo'lish.
x=\frac{-4\sqrt{10}-4}{-6}
x=\frac{-4±4\sqrt{10}}{-6} tenglamasini yeching, bunda ± manfiy. -4 dan 4\sqrt{10} ni ayirish.
x=\frac{2\sqrt{10}+2}{3}
-4-4\sqrt{10} ni -6 ga bo'lish.
x=\frac{2-2\sqrt{10}}{3} x=\frac{2\sqrt{10}+2}{3}
Tenglama yechildi.
-3x^{2}+4x+12=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-3x^{2}+4x+12-12=-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
-3x^{2}+4x=-12
O‘zidan 12 ayirilsa 0 qoladi.
\frac{-3x^{2}+4x}{-3}=-\frac{12}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{4}{-3}x=-\frac{12}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{3}x=-\frac{12}{-3}
4 ni -3 ga bo'lish.
x^{2}-\frac{4}{3}x=4
-12 ni -3 ga bo'lish.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=4+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{3} olish uchun. Keyin, -\frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{3}x+\frac{4}{9}=4+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{3} kvadratini chiqarish.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{40}{9}
4 ni \frac{4}{9} ga qo'shish.
\left(x-\frac{2}{3}\right)^{2}=\frac{40}{9}
x^{2}-\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{40}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{3}=\frac{2\sqrt{10}}{3} x-\frac{2}{3}=-\frac{2\sqrt{10}}{3}
Qisqartirish.
x=\frac{2\sqrt{10}+2}{3} x=\frac{2-2\sqrt{10}}{3}
\frac{2}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}