r uchun yechish
r=\sqrt{194}+15\approx 28,928388277
r=15-\sqrt{194}\approx 1,071611723
Baham ko'rish
Klipbordga nusxa olish
-3r^{2}+90r=93
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-3r^{2}+90r-93=93-93
Tenglamaning ikkala tarafidan 93 ni ayirish.
-3r^{2}+90r-93=0
O‘zidan 93 ayirilsa 0 qoladi.
r=\frac{-90±\sqrt{90^{2}-4\left(-3\right)\left(-93\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 90 ni b va -93 ni c bilan almashtiring.
r=\frac{-90±\sqrt{8100-4\left(-3\right)\left(-93\right)}}{2\left(-3\right)}
90 kvadratini chiqarish.
r=\frac{-90±\sqrt{8100+12\left(-93\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
r=\frac{-90±\sqrt{8100-1116}}{2\left(-3\right)}
12 ni -93 marotabaga ko'paytirish.
r=\frac{-90±\sqrt{6984}}{2\left(-3\right)}
8100 ni -1116 ga qo'shish.
r=\frac{-90±6\sqrt{194}}{2\left(-3\right)}
6984 ning kvadrat ildizini chiqarish.
r=\frac{-90±6\sqrt{194}}{-6}
2 ni -3 marotabaga ko'paytirish.
r=\frac{6\sqrt{194}-90}{-6}
r=\frac{-90±6\sqrt{194}}{-6} tenglamasini yeching, bunda ± musbat. -90 ni 6\sqrt{194} ga qo'shish.
r=15-\sqrt{194}
-90+6\sqrt{194} ni -6 ga bo'lish.
r=\frac{-6\sqrt{194}-90}{-6}
r=\frac{-90±6\sqrt{194}}{-6} tenglamasini yeching, bunda ± manfiy. -90 dan 6\sqrt{194} ni ayirish.
r=\sqrt{194}+15
-90-6\sqrt{194} ni -6 ga bo'lish.
r=15-\sqrt{194} r=\sqrt{194}+15
Tenglama yechildi.
-3r^{2}+90r=93
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3r^{2}+90r}{-3}=\frac{93}{-3}
Ikki tarafini -3 ga bo‘ling.
r^{2}+\frac{90}{-3}r=\frac{93}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
r^{2}-30r=\frac{93}{-3}
90 ni -3 ga bo'lish.
r^{2}-30r=-31
93 ni -3 ga bo'lish.
r^{2}-30r+\left(-15\right)^{2}=-31+\left(-15\right)^{2}
-30 ni bo‘lish, x shartining koeffitsienti, 2 ga -15 olish uchun. Keyin, -15 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
r^{2}-30r+225=-31+225
-15 kvadratini chiqarish.
r^{2}-30r+225=194
-31 ni 225 ga qo'shish.
\left(r-15\right)^{2}=194
r^{2}-30r+225 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(r-15\right)^{2}}=\sqrt{194}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
r-15=\sqrt{194} r-15=-\sqrt{194}
Qisqartirish.
r=\sqrt{194}+15 r=15-\sqrt{194}
15 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}