Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-6x+3+\left(x+1\right)\left(x-1\right)-5\left(x+2\right)=1
-3 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6x+3+x^{2}-1-5\left(x+2\right)=1
Hisoblang: \left(x+1\right)\left(x-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
-6x+2+x^{2}-5\left(x+2\right)=1
2 olish uchun 3 dan 1 ni ayirish.
-6x+2+x^{2}-5x-10=1
-5 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-11x+2+x^{2}-10=1
-11x ni olish uchun -6x va -5x ni birlashtirish.
-11x-8+x^{2}=1
-8 olish uchun 2 dan 10 ni ayirish.
-11x-8+x^{2}-1=0
Ikkala tarafdan 1 ni ayirish.
-11x-9+x^{2}=0
-9 olish uchun -8 dan 1 ni ayirish.
x^{2}-11x-9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -11 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-9\right)}}{2}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121+36}}{2}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{157}}{2}
121 ni 36 ga qo'shish.
x=\frac{11±\sqrt{157}}{2}
-11 ning teskarisi 11 ga teng.
x=\frac{\sqrt{157}+11}{2}
x=\frac{11±\sqrt{157}}{2} tenglamasini yeching, bunda ± musbat. 11 ni \sqrt{157} ga qo'shish.
x=\frac{11-\sqrt{157}}{2}
x=\frac{11±\sqrt{157}}{2} tenglamasini yeching, bunda ± manfiy. 11 dan \sqrt{157} ni ayirish.
x=\frac{\sqrt{157}+11}{2} x=\frac{11-\sqrt{157}}{2}
Tenglama yechildi.
-6x+3+\left(x+1\right)\left(x-1\right)-5\left(x+2\right)=1
-3 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6x+3+x^{2}-1-5\left(x+2\right)=1
Hisoblang: \left(x+1\right)\left(x-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
-6x+2+x^{2}-5\left(x+2\right)=1
2 olish uchun 3 dan 1 ni ayirish.
-6x+2+x^{2}-5x-10=1
-5 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-11x+2+x^{2}-10=1
-11x ni olish uchun -6x va -5x ni birlashtirish.
-11x-8+x^{2}=1
-8 olish uchun 2 dan 10 ni ayirish.
-11x+x^{2}=1+8
8 ni ikki tarafga qo’shing.
-11x+x^{2}=9
9 olish uchun 1 va 8'ni qo'shing.
x^{2}-11x=9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=9+\left(-\frac{11}{2}\right)^{2}
-11 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{2} olish uchun. Keyin, -\frac{11}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-11x+\frac{121}{4}=9+\frac{121}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{2} kvadratini chiqarish.
x^{2}-11x+\frac{121}{4}=\frac{157}{4}
9 ni \frac{121}{4} ga qo'shish.
\left(x-\frac{11}{2}\right)^{2}=\frac{157}{4}
x^{2}-11x+\frac{121}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{157}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{2}=\frac{\sqrt{157}}{2} x-\frac{11}{2}=-\frac{\sqrt{157}}{2}
Qisqartirish.
x=\frac{\sqrt{157}+11}{2} x=\frac{11-\sqrt{157}}{2}
\frac{11}{2} ni tenglamaning ikkala tarafiga qo'shish.