x uchun yechish
x = \frac{\sqrt{157} + 11}{2} \approx 11,764982043
x=\frac{11-\sqrt{157}}{2}\approx -0,764982043
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
- 3 ( 2 x - 1 ) + ( x + 1 ) ( x - 1 ) - 5 ( x + 2 ) = 1
Baham ko'rish
Klipbordga nusxa olish
-6x+3+\left(x+1\right)\left(x-1\right)-5\left(x+2\right)=1
-3 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6x+3+x^{2}-1-5\left(x+2\right)=1
Hisoblang: \left(x+1\right)\left(x-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
-6x+2+x^{2}-5\left(x+2\right)=1
2 olish uchun 3 dan 1 ni ayirish.
-6x+2+x^{2}-5x-10=1
-5 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-11x+2+x^{2}-10=1
-11x ni olish uchun -6x va -5x ni birlashtirish.
-11x-8+x^{2}=1
-8 olish uchun 2 dan 10 ni ayirish.
-11x-8+x^{2}-1=0
Ikkala tarafdan 1 ni ayirish.
-11x-9+x^{2}=0
-9 olish uchun -8 dan 1 ni ayirish.
x^{2}-11x-9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -11 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-9\right)}}{2}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121+36}}{2}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{157}}{2}
121 ni 36 ga qo'shish.
x=\frac{11±\sqrt{157}}{2}
-11 ning teskarisi 11 ga teng.
x=\frac{\sqrt{157}+11}{2}
x=\frac{11±\sqrt{157}}{2} tenglamasini yeching, bunda ± musbat. 11 ni \sqrt{157} ga qo'shish.
x=\frac{11-\sqrt{157}}{2}
x=\frac{11±\sqrt{157}}{2} tenglamasini yeching, bunda ± manfiy. 11 dan \sqrt{157} ni ayirish.
x=\frac{\sqrt{157}+11}{2} x=\frac{11-\sqrt{157}}{2}
Tenglama yechildi.
-6x+3+\left(x+1\right)\left(x-1\right)-5\left(x+2\right)=1
-3 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6x+3+x^{2}-1-5\left(x+2\right)=1
Hisoblang: \left(x+1\right)\left(x-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
-6x+2+x^{2}-5\left(x+2\right)=1
2 olish uchun 3 dan 1 ni ayirish.
-6x+2+x^{2}-5x-10=1
-5 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-11x+2+x^{2}-10=1
-11x ni olish uchun -6x va -5x ni birlashtirish.
-11x-8+x^{2}=1
-8 olish uchun 2 dan 10 ni ayirish.
-11x+x^{2}=1+8
8 ni ikki tarafga qo’shing.
-11x+x^{2}=9
9 olish uchun 1 va 8'ni qo'shing.
x^{2}-11x=9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=9+\left(-\frac{11}{2}\right)^{2}
-11 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{2} olish uchun. Keyin, -\frac{11}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-11x+\frac{121}{4}=9+\frac{121}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{2} kvadratini chiqarish.
x^{2}-11x+\frac{121}{4}=\frac{157}{4}
9 ni \frac{121}{4} ga qo'shish.
\left(x-\frac{11}{2}\right)^{2}=\frac{157}{4}
x^{2}-11x+\frac{121}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{157}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{2}=\frac{\sqrt{157}}{2} x-\frac{11}{2}=-\frac{\sqrt{157}}{2}
Qisqartirish.
x=\frac{\sqrt{157}+11}{2} x=\frac{11-\sqrt{157}}{2}
\frac{11}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}