Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(-28x-16\right)=0
x omili.
x=0 x=-\frac{4}{7}
Tenglamani yechish uchun x=0 va -28x-16=0 ni yeching.
-28x^{2}-16x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}}}{2\left(-28\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -28 ni a, -16 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-16\right)±16}{2\left(-28\right)}
\left(-16\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{16±16}{2\left(-28\right)}
-16 ning teskarisi 16 ga teng.
x=\frac{16±16}{-56}
2 ni -28 marotabaga ko'paytirish.
x=\frac{32}{-56}
x=\frac{16±16}{-56} tenglamasini yeching, bunda ± musbat. 16 ni 16 ga qo'shish.
x=-\frac{4}{7}
\frac{32}{-56} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{-56}
x=\frac{16±16}{-56} tenglamasini yeching, bunda ± manfiy. 16 dan 16 ni ayirish.
x=0
0 ni -56 ga bo'lish.
x=-\frac{4}{7} x=0
Tenglama yechildi.
-28x^{2}-16x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-28x^{2}-16x}{-28}=\frac{0}{-28}
Ikki tarafini -28 ga bo‘ling.
x^{2}+\left(-\frac{16}{-28}\right)x=\frac{0}{-28}
-28 ga bo'lish -28 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{4}{7}x=\frac{0}{-28}
\frac{-16}{-28} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{4}{7}x=0
0 ni -28 ga bo'lish.
x^{2}+\frac{4}{7}x+\left(\frac{2}{7}\right)^{2}=\left(\frac{2}{7}\right)^{2}
\frac{4}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{7} olish uchun. Keyin, \frac{2}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{4}{7}x+\frac{4}{49}=\frac{4}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{7} kvadratini chiqarish.
\left(x+\frac{2}{7}\right)^{2}=\frac{4}{49}
x^{2}+\frac{4}{7}x+\frac{4}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{2}{7}\right)^{2}}=\sqrt{\frac{4}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{2}{7}=\frac{2}{7} x+\frac{2}{7}=-\frac{2}{7}
Qisqartirish.
x=0 x=-\frac{4}{7}
Tenglamaning ikkala tarafidan \frac{2}{7} ni ayirish.