Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-270x-30x^{2}=0
Ikkala tarafdan 30x^{2} ni ayirish.
x\left(-270-30x\right)=0
x omili.
x=0 x=-9
Tenglamani yechish uchun x=0 va -270-30x=0 ni yeching.
-270x-30x^{2}=0
Ikkala tarafdan 30x^{2} ni ayirish.
-30x^{2}-270x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-270\right)±\sqrt{\left(-270\right)^{2}}}{2\left(-30\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -30 ni a, -270 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-270\right)±270}{2\left(-30\right)}
\left(-270\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{270±270}{2\left(-30\right)}
-270 ning teskarisi 270 ga teng.
x=\frac{270±270}{-60}
2 ni -30 marotabaga ko'paytirish.
x=\frac{540}{-60}
x=\frac{270±270}{-60} tenglamasini yeching, bunda ± musbat. 270 ni 270 ga qo'shish.
x=-9
540 ni -60 ga bo'lish.
x=\frac{0}{-60}
x=\frac{270±270}{-60} tenglamasini yeching, bunda ± manfiy. 270 dan 270 ni ayirish.
x=0
0 ni -60 ga bo'lish.
x=-9 x=0
Tenglama yechildi.
-270x-30x^{2}=0
Ikkala tarafdan 30x^{2} ni ayirish.
-30x^{2}-270x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-30x^{2}-270x}{-30}=\frac{0}{-30}
Ikki tarafini -30 ga bo‘ling.
x^{2}+\left(-\frac{270}{-30}\right)x=\frac{0}{-30}
-30 ga bo'lish -30 ga ko'paytirishni bekor qiladi.
x^{2}+9x=\frac{0}{-30}
-270 ni -30 ga bo'lish.
x^{2}+9x=0
0 ni -30 ga bo'lish.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=\left(\frac{9}{2}\right)^{2}
9 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{2} olish uchun. Keyin, \frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+9x+\frac{81}{4}=\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{2} kvadratini chiqarish.
\left(x+\frac{9}{2}\right)^{2}=\frac{81}{4}
x^{2}+9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{2}=\frac{9}{2} x+\frac{9}{2}=-\frac{9}{2}
Qisqartirish.
x=0 x=-9
Tenglamaning ikkala tarafidan \frac{9}{2} ni ayirish.