Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-25x^{2}+21x-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-21±\sqrt{21^{2}-4\left(-25\right)\left(-5\right)}}{2\left(-25\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -25 ni a, 21 ni b va -5 ni c bilan almashtiring.
x=\frac{-21±\sqrt{441-4\left(-25\right)\left(-5\right)}}{2\left(-25\right)}
21 kvadratini chiqarish.
x=\frac{-21±\sqrt{441+100\left(-5\right)}}{2\left(-25\right)}
-4 ni -25 marotabaga ko'paytirish.
x=\frac{-21±\sqrt{441-500}}{2\left(-25\right)}
100 ni -5 marotabaga ko'paytirish.
x=\frac{-21±\sqrt{-59}}{2\left(-25\right)}
441 ni -500 ga qo'shish.
x=\frac{-21±\sqrt{59}i}{2\left(-25\right)}
-59 ning kvadrat ildizini chiqarish.
x=\frac{-21±\sqrt{59}i}{-50}
2 ni -25 marotabaga ko'paytirish.
x=\frac{-21+\sqrt{59}i}{-50}
x=\frac{-21±\sqrt{59}i}{-50} tenglamasini yeching, bunda ± musbat. -21 ni i\sqrt{59} ga qo'shish.
x=\frac{-\sqrt{59}i+21}{50}
-21+i\sqrt{59} ni -50 ga bo'lish.
x=\frac{-\sqrt{59}i-21}{-50}
x=\frac{-21±\sqrt{59}i}{-50} tenglamasini yeching, bunda ± manfiy. -21 dan i\sqrt{59} ni ayirish.
x=\frac{21+\sqrt{59}i}{50}
-21-i\sqrt{59} ni -50 ga bo'lish.
x=\frac{-\sqrt{59}i+21}{50} x=\frac{21+\sqrt{59}i}{50}
Tenglama yechildi.
-25x^{2}+21x-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-25x^{2}+21x-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
-25x^{2}+21x=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
-25x^{2}+21x=5
0 dan -5 ni ayirish.
\frac{-25x^{2}+21x}{-25}=\frac{5}{-25}
Ikki tarafini -25 ga bo‘ling.
x^{2}+\frac{21}{-25}x=\frac{5}{-25}
-25 ga bo'lish -25 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{21}{25}x=\frac{5}{-25}
21 ni -25 ga bo'lish.
x^{2}-\frac{21}{25}x=-\frac{1}{5}
\frac{5}{-25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{21}{25}x+\left(-\frac{21}{50}\right)^{2}=-\frac{1}{5}+\left(-\frac{21}{50}\right)^{2}
-\frac{21}{25} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{21}{50} olish uchun. Keyin, -\frac{21}{50} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{21}{25}x+\frac{441}{2500}=-\frac{1}{5}+\frac{441}{2500}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{21}{50} kvadratini chiqarish.
x^{2}-\frac{21}{25}x+\frac{441}{2500}=-\frac{59}{2500}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{5} ni \frac{441}{2500} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{21}{50}\right)^{2}=-\frac{59}{2500}
x^{2}-\frac{21}{25}x+\frac{441}{2500} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{21}{50}\right)^{2}}=\sqrt{-\frac{59}{2500}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{21}{50}=\frac{\sqrt{59}i}{50} x-\frac{21}{50}=-\frac{\sqrt{59}i}{50}
Qisqartirish.
x=\frac{21+\sqrt{59}i}{50} x=\frac{-\sqrt{59}i+21}{50}
\frac{21}{50} ni tenglamaning ikkala tarafiga qo'shish.