Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-21x^{2}+77x-\left(-30\right)=18x
Ikkala tarafdan -30 ni ayirish.
-21x^{2}+77x+30=18x
-30 ning teskarisi 30 ga teng.
-21x^{2}+77x+30-18x=0
Ikkala tarafdan 18x ni ayirish.
-21x^{2}+59x+30=0
59x ni olish uchun 77x va -18x ni birlashtirish.
x=\frac{-59±\sqrt{59^{2}-4\left(-21\right)\times 30}}{2\left(-21\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -21 ni a, 59 ni b va 30 ni c bilan almashtiring.
x=\frac{-59±\sqrt{3481-4\left(-21\right)\times 30}}{2\left(-21\right)}
59 kvadratini chiqarish.
x=\frac{-59±\sqrt{3481+84\times 30}}{2\left(-21\right)}
-4 ni -21 marotabaga ko'paytirish.
x=\frac{-59±\sqrt{3481+2520}}{2\left(-21\right)}
84 ni 30 marotabaga ko'paytirish.
x=\frac{-59±\sqrt{6001}}{2\left(-21\right)}
3481 ni 2520 ga qo'shish.
x=\frac{-59±\sqrt{6001}}{-42}
2 ni -21 marotabaga ko'paytirish.
x=\frac{\sqrt{6001}-59}{-42}
x=\frac{-59±\sqrt{6001}}{-42} tenglamasini yeching, bunda ± musbat. -59 ni \sqrt{6001} ga qo'shish.
x=\frac{59-\sqrt{6001}}{42}
-59+\sqrt{6001} ni -42 ga bo'lish.
x=\frac{-\sqrt{6001}-59}{-42}
x=\frac{-59±\sqrt{6001}}{-42} tenglamasini yeching, bunda ± manfiy. -59 dan \sqrt{6001} ni ayirish.
x=\frac{\sqrt{6001}+59}{42}
-59-\sqrt{6001} ni -42 ga bo'lish.
x=\frac{59-\sqrt{6001}}{42} x=\frac{\sqrt{6001}+59}{42}
Tenglama yechildi.
-21x^{2}+77x-18x=-30
Ikkala tarafdan 18x ni ayirish.
-21x^{2}+59x=-30
59x ni olish uchun 77x va -18x ni birlashtirish.
\frac{-21x^{2}+59x}{-21}=-\frac{30}{-21}
Ikki tarafini -21 ga bo‘ling.
x^{2}+\frac{59}{-21}x=-\frac{30}{-21}
-21 ga bo'lish -21 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{59}{21}x=-\frac{30}{-21}
59 ni -21 ga bo'lish.
x^{2}-\frac{59}{21}x=\frac{10}{7}
\frac{-30}{-21} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{59}{21}x+\left(-\frac{59}{42}\right)^{2}=\frac{10}{7}+\left(-\frac{59}{42}\right)^{2}
-\frac{59}{21} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{59}{42} olish uchun. Keyin, -\frac{59}{42} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{59}{21}x+\frac{3481}{1764}=\frac{10}{7}+\frac{3481}{1764}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{59}{42} kvadratini chiqarish.
x^{2}-\frac{59}{21}x+\frac{3481}{1764}=\frac{6001}{1764}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{10}{7} ni \frac{3481}{1764} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{59}{42}\right)^{2}=\frac{6001}{1764}
x^{2}-\frac{59}{21}x+\frac{3481}{1764} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{59}{42}\right)^{2}}=\sqrt{\frac{6001}{1764}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{59}{42}=\frac{\sqrt{6001}}{42} x-\frac{59}{42}=-\frac{\sqrt{6001}}{42}
Qisqartirish.
x=\frac{\sqrt{6001}+59}{42} x=\frac{59-\sqrt{6001}}{42}
\frac{59}{42} ni tenglamaning ikkala tarafiga qo'shish.