Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2y^{2}-6y+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-2\right)\times 5}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -6 ni b va 5 ni c bilan almashtiring.
y=\frac{-\left(-6\right)±\sqrt{36-4\left(-2\right)\times 5}}{2\left(-2\right)}
-6 kvadratini chiqarish.
y=\frac{-\left(-6\right)±\sqrt{36+8\times 5}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
y=\frac{-\left(-6\right)±\sqrt{36+40}}{2\left(-2\right)}
8 ni 5 marotabaga ko'paytirish.
y=\frac{-\left(-6\right)±\sqrt{76}}{2\left(-2\right)}
36 ni 40 ga qo'shish.
y=\frac{-\left(-6\right)±2\sqrt{19}}{2\left(-2\right)}
76 ning kvadrat ildizini chiqarish.
y=\frac{6±2\sqrt{19}}{2\left(-2\right)}
-6 ning teskarisi 6 ga teng.
y=\frac{6±2\sqrt{19}}{-4}
2 ni -2 marotabaga ko'paytirish.
y=\frac{2\sqrt{19}+6}{-4}
y=\frac{6±2\sqrt{19}}{-4} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{19} ga qo'shish.
y=\frac{-\sqrt{19}-3}{2}
6+2\sqrt{19} ni -4 ga bo'lish.
y=\frac{6-2\sqrt{19}}{-4}
y=\frac{6±2\sqrt{19}}{-4} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{19} ni ayirish.
y=\frac{\sqrt{19}-3}{2}
6-2\sqrt{19} ni -4 ga bo'lish.
y=\frac{-\sqrt{19}-3}{2} y=\frac{\sqrt{19}-3}{2}
Tenglama yechildi.
-2y^{2}-6y+5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-2y^{2}-6y+5-5=-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
-2y^{2}-6y=-5
O‘zidan 5 ayirilsa 0 qoladi.
\frac{-2y^{2}-6y}{-2}=-\frac{5}{-2}
Ikki tarafini -2 ga bo‘ling.
y^{2}+\left(-\frac{6}{-2}\right)y=-\frac{5}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
y^{2}+3y=-\frac{5}{-2}
-6 ni -2 ga bo'lish.
y^{2}+3y=\frac{5}{2}
-5 ni -2 ga bo'lish.
y^{2}+3y+\left(\frac{3}{2}\right)^{2}=\frac{5}{2}+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+3y+\frac{9}{4}=\frac{5}{2}+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
y^{2}+3y+\frac{9}{4}=\frac{19}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{2} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y+\frac{3}{2}\right)^{2}=\frac{19}{4}
y^{2}+3y+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+\frac{3}{2}\right)^{2}}=\sqrt{\frac{19}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+\frac{3}{2}=\frac{\sqrt{19}}{2} y+\frac{3}{2}=-\frac{\sqrt{19}}{2}
Qisqartirish.
y=\frac{\sqrt{19}-3}{2} y=\frac{-\sqrt{19}-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.