x uchun yechish (complex solution)
x=-1-3i
x=-1+3i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-2x-10-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-x^{2}-2x-10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -2 ni b va -10 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+4\left(-10\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4-40}}{2\left(-1\right)}
4 ni -10 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{-36}}{2\left(-1\right)}
4 ni -40 ga qo'shish.
x=\frac{-\left(-2\right)±6i}{2\left(-1\right)}
-36 ning kvadrat ildizini chiqarish.
x=\frac{2±6i}{2\left(-1\right)}
-2 ning teskarisi 2 ga teng.
x=\frac{2±6i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2+6i}{-2}
x=\frac{2±6i}{-2} tenglamasini yeching, bunda ± musbat. 2 ni 6i ga qo'shish.
x=-1-3i
2+6i ni -2 ga bo'lish.
x=\frac{2-6i}{-2}
x=\frac{2±6i}{-2} tenglamasini yeching, bunda ± manfiy. 2 dan 6i ni ayirish.
x=-1+3i
2-6i ni -2 ga bo'lish.
x=-1-3i x=-1+3i
Tenglama yechildi.
-2x-10-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-2x-x^{2}=10
10 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-x^{2}-2x=10
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-2x}{-1}=\frac{10}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{2}{-1}\right)x=\frac{10}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{10}{-1}
-2 ni -1 ga bo'lish.
x^{2}+2x=-10
10 ni -1 ga bo'lish.
x^{2}+2x+1^{2}=-10+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=-10+1
1 kvadratini chiqarish.
x^{2}+2x+1=-9
-10 ni 1 ga qo'shish.
\left(x+1\right)^{2}=-9
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=3i x+1=-3i
Qisqartirish.
x=-1+3i x=-1-3i
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}