Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=-7 ab=-2\left(-3\right)=6
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -2x^{2}+ax+bx-3 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-6 -2,-3
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 6-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-6=-7 -2-3=-5
Har bir juftlik yigʻindisini hisoblang.
a=-1 b=-6
Yechim – -7 yigʻindisini beruvchi juftlik.
\left(-2x^{2}-x\right)+\left(-6x-3\right)
-2x^{2}-7x-3 ni \left(-2x^{2}-x\right)+\left(-6x-3\right) sifatida qaytadan yozish.
-x\left(2x+1\right)-3\left(2x+1\right)
Birinchi guruhda -x ni va ikkinchi guruhda -3 ni faktordan chiqaring.
\left(2x+1\right)\left(-x-3\right)
Distributiv funktsiyasidan foydalangan holda 2x+1 umumiy terminini chiqaring.
x=-\frac{1}{2} x=-3
Tenglamani yechish uchun 2x+1=0 va -x-3=0 ni yeching.
-2x^{2}-7x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -7 ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49+8\left(-3\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\left(-2\right)}
8 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\left(-2\right)}
49 ni -24 ga qo'shish.
x=\frac{-\left(-7\right)±5}{2\left(-2\right)}
25 ning kvadrat ildizini chiqarish.
x=\frac{7±5}{2\left(-2\right)}
-7 ning teskarisi 7 ga teng.
x=\frac{7±5}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{12}{-4}
x=\frac{7±5}{-4} tenglamasini yeching, bunda ± musbat. 7 ni 5 ga qo'shish.
x=-3
12 ni -4 ga bo'lish.
x=\frac{2}{-4}
x=\frac{7±5}{-4} tenglamasini yeching, bunda ± manfiy. 7 dan 5 ni ayirish.
x=-\frac{1}{2}
\frac{2}{-4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-3 x=-\frac{1}{2}
Tenglama yechildi.
-2x^{2}-7x-3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-2x^{2}-7x-3-\left(-3\right)=-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
-2x^{2}-7x=-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
-2x^{2}-7x=3
0 dan -3 ni ayirish.
\frac{-2x^{2}-7x}{-2}=\frac{3}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\left(-\frac{7}{-2}\right)x=\frac{3}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{2}x=\frac{3}{-2}
-7 ni -2 ga bo'lish.
x^{2}+\frac{7}{2}x=-\frac{3}{2}
3 ni -2 ga bo'lish.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{7}{4}\right)^{2}
\frac{7}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{4} olish uchun. Keyin, \frac{7}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{4} kvadratini chiqarish.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{2} ni \frac{49}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{7}{4}\right)^{2}=\frac{25}{16}
x^{2}+\frac{7}{2}x+\frac{49}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{4}=\frac{5}{4} x+\frac{7}{4}=-\frac{5}{4}
Qisqartirish.
x=-\frac{1}{2} x=-3
Tenglamaning ikkala tarafidan \frac{7}{4} ni ayirish.