Omil
2\left(1-x\right)\left(x+12\right)
Baholash
2\left(1-x\right)\left(x+12\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\left(-x^{2}-11x+12\right)
2 omili.
a+b=-11 ab=-12=-12
Hisoblang: -x^{2}-11x+12. Ifodani guruhlash orqali faktorlang. Avvalo, ifoda -x^{2}+ax+bx+12 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-12 2,-6 3,-4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-12=-11 2-6=-4 3-4=-1
Har bir juftlik yigʻindisini hisoblang.
a=1 b=-12
Yechim – -11 yigʻindisini beruvchi juftlik.
\left(-x^{2}+x\right)+\left(-12x+12\right)
-x^{2}-11x+12 ni \left(-x^{2}+x\right)+\left(-12x+12\right) sifatida qaytadan yozish.
x\left(-x+1\right)+12\left(-x+1\right)
Birinchi guruhda x ni va ikkinchi guruhda 12 ni faktordan chiqaring.
\left(-x+1\right)\left(x+12\right)
Distributiv funktsiyasidan foydalangan holda -x+1 umumiy terminini chiqaring.
2\left(-x+1\right)\left(x+12\right)
Toʻliq ajratilgan ifodani qaytadan yozing.
-2x^{2}-22x+24=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-2\right)\times 24}}{2\left(-2\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-22\right)±\sqrt{484-4\left(-2\right)\times 24}}{2\left(-2\right)}
-22 kvadratini chiqarish.
x=\frac{-\left(-22\right)±\sqrt{484+8\times 24}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-22\right)±\sqrt{484+192}}{2\left(-2\right)}
8 ni 24 marotabaga ko'paytirish.
x=\frac{-\left(-22\right)±\sqrt{676}}{2\left(-2\right)}
484 ni 192 ga qo'shish.
x=\frac{-\left(-22\right)±26}{2\left(-2\right)}
676 ning kvadrat ildizini chiqarish.
x=\frac{22±26}{2\left(-2\right)}
-22 ning teskarisi 22 ga teng.
x=\frac{22±26}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{48}{-4}
x=\frac{22±26}{-4} tenglamasini yeching, bunda ± musbat. 22 ni 26 ga qo'shish.
x=-12
48 ni -4 ga bo'lish.
x=-\frac{4}{-4}
x=\frac{22±26}{-4} tenglamasini yeching, bunda ± manfiy. 22 dan 26 ni ayirish.
x=1
-4 ni -4 ga bo'lish.
-2x^{2}-22x+24=-2\left(x-\left(-12\right)\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -12 ga va x_{2} uchun 1 ga bo‘ling.
-2x^{2}-22x+24=-2\left(x+12\right)\left(x-1\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}