Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x^{2}+4x+3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 3}}{2\left(-2\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 3}}{2\left(-2\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+8\times 3}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+24}}{2\left(-2\right)}
8 ni 3 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{40}}{2\left(-2\right)}
16 ni 24 ga qo'shish.
x=\frac{-4±2\sqrt{10}}{2\left(-2\right)}
40 ning kvadrat ildizini chiqarish.
x=\frac{-4±2\sqrt{10}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{2\sqrt{10}-4}{-4}
x=\frac{-4±2\sqrt{10}}{-4} tenglamasini yeching, bunda ± musbat. -4 ni 2\sqrt{10} ga qo'shish.
x=-\frac{\sqrt{10}}{2}+1
-4+2\sqrt{10} ni -4 ga bo'lish.
x=\frac{-2\sqrt{10}-4}{-4}
x=\frac{-4±2\sqrt{10}}{-4} tenglamasini yeching, bunda ± manfiy. -4 dan 2\sqrt{10} ni ayirish.
x=\frac{\sqrt{10}}{2}+1
-4-2\sqrt{10} ni -4 ga bo'lish.
-2x^{2}+4x+3=-2\left(x-\left(-\frac{\sqrt{10}}{2}+1\right)\right)\left(x-\left(\frac{\sqrt{10}}{2}+1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 1-\frac{\sqrt{10}}{2} ga va x_{2} uchun 1+\frac{\sqrt{10}}{2} ga bo‘ling.