x uchun yechish
x = \frac{\sqrt{31} + 1}{2} \approx 3,283882181
x=\frac{1-\sqrt{31}}{2}\approx -2,283882181
Grafik
Baham ko'rish
Klipbordga nusxa olish
-2x^{2}+2x+15=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\times 15}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 2 ni b va 15 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-2\right)\times 15}}{2\left(-2\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+8\times 15}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4+120}}{2\left(-2\right)}
8 ni 15 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{124}}{2\left(-2\right)}
4 ni 120 ga qo'shish.
x=\frac{-2±2\sqrt{31}}{2\left(-2\right)}
124 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{31}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{2\sqrt{31}-2}{-4}
x=\frac{-2±2\sqrt{31}}{-4} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{31} ga qo'shish.
x=\frac{1-\sqrt{31}}{2}
-2+2\sqrt{31} ni -4 ga bo'lish.
x=\frac{-2\sqrt{31}-2}{-4}
x=\frac{-2±2\sqrt{31}}{-4} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{31} ni ayirish.
x=\frac{\sqrt{31}+1}{2}
-2-2\sqrt{31} ni -4 ga bo'lish.
x=\frac{1-\sqrt{31}}{2} x=\frac{\sqrt{31}+1}{2}
Tenglama yechildi.
-2x^{2}+2x+15=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-2x^{2}+2x+15-15=-15
Tenglamaning ikkala tarafidan 15 ni ayirish.
-2x^{2}+2x=-15
O‘zidan 15 ayirilsa 0 qoladi.
\frac{-2x^{2}+2x}{-2}=-\frac{15}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{2}{-2}x=-\frac{15}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-x=-\frac{15}{-2}
2 ni -2 ga bo'lish.
x^{2}-x=\frac{15}{2}
-15 ni -2 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{15}{2}+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=\frac{15}{2}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{31}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{15}{2} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{2}\right)^{2}=\frac{31}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{31}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{31}}{2} x-\frac{1}{2}=-\frac{\sqrt{31}}{2}
Qisqartirish.
x=\frac{\sqrt{31}+1}{2} x=\frac{1-\sqrt{31}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}