Asosiy tarkibga oʻtish
x, y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x+y=15,3x+2y=-33
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
-2x+y=15
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
-2x=-y+15
Tenglamaning ikkala tarafidan y ni ayirish.
x=-\frac{1}{2}\left(-y+15\right)
Ikki tarafini -2 ga bo‘ling.
x=\frac{1}{2}y-\frac{15}{2}
-\frac{1}{2} ni -y+15 marotabaga ko'paytirish.
3\left(\frac{1}{2}y-\frac{15}{2}\right)+2y=-33
\frac{-15+y}{2} ni x uchun boshqa tenglamada almashtirish, 3x+2y=-33.
\frac{3}{2}y-\frac{45}{2}+2y=-33
3 ni \frac{-15+y}{2} marotabaga ko'paytirish.
\frac{7}{2}y-\frac{45}{2}=-33
\frac{3y}{2} ni 2y ga qo'shish.
\frac{7}{2}y=-\frac{21}{2}
\frac{45}{2} ni tenglamaning ikkala tarafiga qo'shish.
y=-3
Tenglamaning ikki tarafini \frac{7}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{1}{2}\left(-3\right)-\frac{15}{2}
-3 ni y uchun x=\frac{1}{2}y-\frac{15}{2} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{-3-15}{2}
\frac{1}{2} ni -3 marotabaga ko'paytirish.
x=-9
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{15}{2} ni -\frac{3}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-9,y=-3
Tizim hal qilindi.
-2x+y=15,3x+2y=-33
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}-2&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-33\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}-2&1\\3&2\end{matrix}\right))\left(\begin{matrix}-2&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\3&2\end{matrix}\right))\left(\begin{matrix}15\\-33\end{matrix}\right)
\left(\begin{matrix}-2&1\\3&2\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\3&2\end{matrix}\right))\left(\begin{matrix}15\\-33\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&1\\3&2\end{matrix}\right))\left(\begin{matrix}15\\-33\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2\times 2-3}&-\frac{1}{-2\times 2-3}\\-\frac{3}{-2\times 2-3}&-\frac{2}{-2\times 2-3}\end{matrix}\right)\left(\begin{matrix}15\\-33\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}&\frac{1}{7}\\\frac{3}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}15\\-33\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}\times 15+\frac{1}{7}\left(-33\right)\\\frac{3}{7}\times 15+\frac{2}{7}\left(-33\right)\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=-9,y=-3
x va y matritsa elementlarini chiqarib olish.
-2x+y=15,3x+2y=-33
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
3\left(-2\right)x+3y=3\times 15,-2\times 3x-2\times 2y=-2\left(-33\right)
-2x va 3x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 3 ga va ikkinchining har bir tarafidagi barcha shartlarni -2 ga ko'paytiring.
-6x+3y=45,-6x-4y=66
Qisqartirish.
-6x+6x+3y+4y=45-66
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali -6x+3y=45 dan -6x-4y=66 ni ayirish.
3y+4y=45-66
-6x ni 6x ga qo'shish. -6x va 6x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
7y=45-66
3y ni 4y ga qo'shish.
7y=-21
45 ni -66 ga qo'shish.
y=-3
Ikki tarafini 7 ga bo‘ling.
3x+2\left(-3\right)=-33
-3 ni y uchun 3x+2y=-33 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
3x-6=-33
2 ni -3 marotabaga ko'paytirish.
3x=-27
6 ni tenglamaning ikkala tarafiga qo'shish.
x=-9
Ikki tarafini 3 ga bo‘ling.
x=-9,y=-3
Tizim hal qilindi.