Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2xx+x\times 12=-80
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-2x^{2}+x\times 12=-80
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-2x^{2}+x\times 12+80=0
80 ni ikki tarafga qo’shing.
-2x^{2}+12x+80=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\times 80}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 12 ni b va 80 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\left(-2\right)\times 80}}{2\left(-2\right)}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144+8\times 80}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144+640}}{2\left(-2\right)}
8 ni 80 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{784}}{2\left(-2\right)}
144 ni 640 ga qo'shish.
x=\frac{-12±28}{2\left(-2\right)}
784 ning kvadrat ildizini chiqarish.
x=\frac{-12±28}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{16}{-4}
x=\frac{-12±28}{-4} tenglamasini yeching, bunda ± musbat. -12 ni 28 ga qo'shish.
x=-4
16 ni -4 ga bo'lish.
x=-\frac{40}{-4}
x=\frac{-12±28}{-4} tenglamasini yeching, bunda ± manfiy. -12 dan 28 ni ayirish.
x=10
-40 ni -4 ga bo'lish.
x=-4 x=10
Tenglama yechildi.
-2xx+x\times 12=-80
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-2x^{2}+x\times 12=-80
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-2x^{2}+12x=-80
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+12x}{-2}=-\frac{80}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{12}{-2}x=-\frac{80}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-6x=-\frac{80}{-2}
12 ni -2 ga bo'lish.
x^{2}-6x=40
-80 ni -2 ga bo'lish.
x^{2}-6x+\left(-3\right)^{2}=40+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=40+9
-3 kvadratini chiqarish.
x^{2}-6x+9=49
40 ni 9 ga qo'shish.
\left(x-3\right)^{2}=49
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{49}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=7 x-3=-7
Qisqartirish.
x=10 x=-4
3 ni tenglamaning ikkala tarafiga qo'shish.