Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2a^{2}-2a-3+4a^{2}=0
4a^{2} ni ikki tarafga qo’shing.
2a^{2}-2a-3=0
2a^{2} ni olish uchun -2a^{2} va 4a^{2} ni birlashtirish.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -2 ni b va -3 ni c bilan almashtiring.
a=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-3\right)}}{2\times 2}
-2 kvadratini chiqarish.
a=\frac{-\left(-2\right)±\sqrt{4-8\left(-3\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
a=\frac{-\left(-2\right)±\sqrt{4+24}}{2\times 2}
-8 ni -3 marotabaga ko'paytirish.
a=\frac{-\left(-2\right)±\sqrt{28}}{2\times 2}
4 ni 24 ga qo'shish.
a=\frac{-\left(-2\right)±2\sqrt{7}}{2\times 2}
28 ning kvadrat ildizini chiqarish.
a=\frac{2±2\sqrt{7}}{2\times 2}
-2 ning teskarisi 2 ga teng.
a=\frac{2±2\sqrt{7}}{4}
2 ni 2 marotabaga ko'paytirish.
a=\frac{2\sqrt{7}+2}{4}
a=\frac{2±2\sqrt{7}}{4} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{7} ga qo'shish.
a=\frac{\sqrt{7}+1}{2}
2+2\sqrt{7} ni 4 ga bo'lish.
a=\frac{2-2\sqrt{7}}{4}
a=\frac{2±2\sqrt{7}}{4} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{7} ni ayirish.
a=\frac{1-\sqrt{7}}{2}
2-2\sqrt{7} ni 4 ga bo'lish.
a=\frac{\sqrt{7}+1}{2} a=\frac{1-\sqrt{7}}{2}
Tenglama yechildi.
-2a^{2}-2a-3+4a^{2}=0
4a^{2} ni ikki tarafga qo’shing.
2a^{2}-2a-3=0
2a^{2} ni olish uchun -2a^{2} va 4a^{2} ni birlashtirish.
2a^{2}-2a=3
3 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{2a^{2}-2a}{2}=\frac{3}{2}
Ikki tarafini 2 ga bo‘ling.
a^{2}+\left(-\frac{2}{2}\right)a=\frac{3}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
a^{2}-a=\frac{3}{2}
-2 ni 2 ga bo'lish.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-a+\frac{1}{4}=\frac{3}{2}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
a^{2}-a+\frac{1}{4}=\frac{7}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(a-\frac{1}{2}\right)^{2}=\frac{7}{4}
a^{2}-a+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{\frac{7}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-\frac{1}{2}=\frac{\sqrt{7}}{2} a-\frac{1}{2}=-\frac{\sqrt{7}}{2}
Qisqartirish.
a=\frac{\sqrt{7}+1}{2} a=\frac{1-\sqrt{7}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.