x uchun yechish
x=-2
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
-2\left(x-1\right)\left(x+1\right)=x-1-\left(-\left(1+x\right)\times 3\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, 1+x,1-x ning eng kichik karralisiga ko‘paytiring.
\left(-2x+2\right)\left(x+1\right)=x-1-\left(-\left(1+x\right)\times 3\right)
-2 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x^{2}+2=x-1-\left(-\left(1+x\right)\times 3\right)
-2x+2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-2x^{2}+2=x-1-\left(-3\left(1+x\right)\right)
-3 hosil qilish uchun -1 va 3 ni ko'paytirish.
-2x^{2}+2=x-1-\left(-3-3x\right)
-3 ga 1+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x^{2}+2=x-1+3+3x
-3-3x teskarisini topish uchun har birining teskarisini toping.
-2x^{2}+2=x+2+3x
2 olish uchun -1 va 3'ni qo'shing.
-2x^{2}+2=4x+2
4x ni olish uchun x va 3x ni birlashtirish.
-2x^{2}+2-4x=2
Ikkala tarafdan 4x ni ayirish.
-2x^{2}+2-4x-2=0
Ikkala tarafdan 2 ni ayirish.
-2x^{2}-4x=0
0 olish uchun 2 dan 2 ni ayirish.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -4 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±4}{2\left(-2\right)}
\left(-4\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{4±4}{2\left(-2\right)}
-4 ning teskarisi 4 ga teng.
x=\frac{4±4}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{8}{-4}
x=\frac{4±4}{-4} tenglamasini yeching, bunda ± musbat. 4 ni 4 ga qo'shish.
x=-2
8 ni -4 ga bo'lish.
x=\frac{0}{-4}
x=\frac{4±4}{-4} tenglamasini yeching, bunda ± manfiy. 4 dan 4 ni ayirish.
x=0
0 ni -4 ga bo'lish.
x=-2 x=0
Tenglama yechildi.
-2\left(x-1\right)\left(x+1\right)=x-1-\left(-\left(1+x\right)\times 3\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, 1+x,1-x ning eng kichik karralisiga ko‘paytiring.
\left(-2x+2\right)\left(x+1\right)=x-1-\left(-\left(1+x\right)\times 3\right)
-2 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x^{2}+2=x-1-\left(-\left(1+x\right)\times 3\right)
-2x+2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-2x^{2}+2=x-1-\left(-3\left(1+x\right)\right)
-3 hosil qilish uchun -1 va 3 ni ko'paytirish.
-2x^{2}+2=x-1-\left(-3-3x\right)
-3 ga 1+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x^{2}+2=x-1+3+3x
-3-3x teskarisini topish uchun har birining teskarisini toping.
-2x^{2}+2=x+2+3x
2 olish uchun -1 va 3'ni qo'shing.
-2x^{2}+2=4x+2
4x ni olish uchun x va 3x ni birlashtirish.
-2x^{2}+2-4x=2
Ikkala tarafdan 4x ni ayirish.
-2x^{2}-4x=2-2
Ikkala tarafdan 2 ni ayirish.
-2x^{2}-4x=0
0 olish uchun 2 dan 2 ni ayirish.
\frac{-2x^{2}-4x}{-2}=\frac{0}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\left(-\frac{4}{-2}\right)x=\frac{0}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{0}{-2}
-4 ni -2 ga bo'lish.
x^{2}+2x=0
0 ni -2 ga bo'lish.
x^{2}+2x+1^{2}=1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=1
1 kvadratini chiqarish.
\left(x+1\right)^{2}=1
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=1 x+1=-1
Qisqartirish.
x=0 x=-2
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}