x uchun yechish
x=1
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
-18x^{2}+18x=0
-18x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(-18x+18\right)=0
x omili.
x=0 x=1
Tenglamani yechish uchun x=0 va -18x+18=0 ni yeching.
-18x^{2}+18x=0
-18x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=\frac{-18±\sqrt{18^{2}}}{2\left(-18\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -18 ni a, 18 ni b va 0 ni c bilan almashtiring.
x=\frac{-18±18}{2\left(-18\right)}
18^{2} ning kvadrat ildizini chiqarish.
x=\frac{-18±18}{-36}
2 ni -18 marotabaga ko'paytirish.
x=\frac{0}{-36}
x=\frac{-18±18}{-36} tenglamasini yeching, bunda ± musbat. -18 ni 18 ga qo'shish.
x=0
0 ni -36 ga bo'lish.
x=-\frac{36}{-36}
x=\frac{-18±18}{-36} tenglamasini yeching, bunda ± manfiy. -18 dan 18 ni ayirish.
x=1
-36 ni -36 ga bo'lish.
x=0 x=1
Tenglama yechildi.
-18x^{2}+18x=0
-18x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{-18x^{2}+18x}{-18}=\frac{0}{-18}
Ikki tarafini -18 ga bo‘ling.
x^{2}+\frac{18}{-18}x=\frac{0}{-18}
-18 ga bo'lish -18 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{0}{-18}
18 ni -18 ga bo'lish.
x^{2}-x=0
0 ni -18 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Qisqartirish.
x=1 x=0
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}