Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-16x^{2}+5184x+421=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-5184±\sqrt{5184^{2}-4\left(-16\right)\times 421}}{2\left(-16\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5184±\sqrt{26873856-4\left(-16\right)\times 421}}{2\left(-16\right)}
5184 kvadratini chiqarish.
x=\frac{-5184±\sqrt{26873856+64\times 421}}{2\left(-16\right)}
-4 ni -16 marotabaga ko'paytirish.
x=\frac{-5184±\sqrt{26873856+26944}}{2\left(-16\right)}
64 ni 421 marotabaga ko'paytirish.
x=\frac{-5184±\sqrt{26900800}}{2\left(-16\right)}
26873856 ni 26944 ga qo'shish.
x=\frac{-5184±40\sqrt{16813}}{2\left(-16\right)}
26900800 ning kvadrat ildizini chiqarish.
x=\frac{-5184±40\sqrt{16813}}{-32}
2 ni -16 marotabaga ko'paytirish.
x=\frac{40\sqrt{16813}-5184}{-32}
x=\frac{-5184±40\sqrt{16813}}{-32} tenglamasini yeching, bunda ± musbat. -5184 ni 40\sqrt{16813} ga qo'shish.
x=-\frac{5\sqrt{16813}}{4}+162
-5184+40\sqrt{16813} ni -32 ga bo'lish.
x=\frac{-40\sqrt{16813}-5184}{-32}
x=\frac{-5184±40\sqrt{16813}}{-32} tenglamasini yeching, bunda ± manfiy. -5184 dan 40\sqrt{16813} ni ayirish.
x=\frac{5\sqrt{16813}}{4}+162
-5184-40\sqrt{16813} ni -32 ga bo'lish.
-16x^{2}+5184x+421=-16\left(x-\left(-\frac{5\sqrt{16813}}{4}+162\right)\right)\left(x-\left(\frac{5\sqrt{16813}}{4}+162\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 162-\frac{5\sqrt{16813}}{4} ga va x_{2} uchun 162+\frac{5\sqrt{16813}}{4} ga bo‘ling.