Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-16x^{2}+32x+40=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-32±\sqrt{32^{2}-4\left(-16\right)\times 40}}{2\left(-16\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-32±\sqrt{1024-4\left(-16\right)\times 40}}{2\left(-16\right)}
32 kvadratini chiqarish.
x=\frac{-32±\sqrt{1024+64\times 40}}{2\left(-16\right)}
-4 ni -16 marotabaga ko'paytirish.
x=\frac{-32±\sqrt{1024+2560}}{2\left(-16\right)}
64 ni 40 marotabaga ko'paytirish.
x=\frac{-32±\sqrt{3584}}{2\left(-16\right)}
1024 ni 2560 ga qo'shish.
x=\frac{-32±16\sqrt{14}}{2\left(-16\right)}
3584 ning kvadrat ildizini chiqarish.
x=\frac{-32±16\sqrt{14}}{-32}
2 ni -16 marotabaga ko'paytirish.
x=\frac{16\sqrt{14}-32}{-32}
x=\frac{-32±16\sqrt{14}}{-32} tenglamasini yeching, bunda ± musbat. -32 ni 16\sqrt{14} ga qo'shish.
x=-\frac{\sqrt{14}}{2}+1
-32+16\sqrt{14} ni -32 ga bo'lish.
x=\frac{-16\sqrt{14}-32}{-32}
x=\frac{-32±16\sqrt{14}}{-32} tenglamasini yeching, bunda ± manfiy. -32 dan 16\sqrt{14} ni ayirish.
x=\frac{\sqrt{14}}{2}+1
-32-16\sqrt{14} ni -32 ga bo'lish.
-16x^{2}+32x+40=-16\left(x-\left(-\frac{\sqrt{14}}{2}+1\right)\right)\left(x-\left(\frac{\sqrt{14}}{2}+1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 1-\frac{\sqrt{14}}{2} ga va x_{2} uchun 1+\frac{\sqrt{14}}{2} ga bo‘ling.