Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-16t^{2}+36t+7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-36±\sqrt{36^{2}-4\left(-16\right)\times 7}}{2\left(-16\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -16 ni a, 36 ni b va 7 ni c bilan almashtiring.
t=\frac{-36±\sqrt{1296-4\left(-16\right)\times 7}}{2\left(-16\right)}
36 kvadratini chiqarish.
t=\frac{-36±\sqrt{1296+64\times 7}}{2\left(-16\right)}
-4 ni -16 marotabaga ko'paytirish.
t=\frac{-36±\sqrt{1296+448}}{2\left(-16\right)}
64 ni 7 marotabaga ko'paytirish.
t=\frac{-36±\sqrt{1744}}{2\left(-16\right)}
1296 ni 448 ga qo'shish.
t=\frac{-36±4\sqrt{109}}{2\left(-16\right)}
1744 ning kvadrat ildizini chiqarish.
t=\frac{-36±4\sqrt{109}}{-32}
2 ni -16 marotabaga ko'paytirish.
t=\frac{4\sqrt{109}-36}{-32}
t=\frac{-36±4\sqrt{109}}{-32} tenglamasini yeching, bunda ± musbat. -36 ni 4\sqrt{109} ga qo'shish.
t=\frac{9-\sqrt{109}}{8}
-36+4\sqrt{109} ni -32 ga bo'lish.
t=\frac{-4\sqrt{109}-36}{-32}
t=\frac{-36±4\sqrt{109}}{-32} tenglamasini yeching, bunda ± manfiy. -36 dan 4\sqrt{109} ni ayirish.
t=\frac{\sqrt{109}+9}{8}
-36-4\sqrt{109} ni -32 ga bo'lish.
t=\frac{9-\sqrt{109}}{8} t=\frac{\sqrt{109}+9}{8}
Tenglama yechildi.
-16t^{2}+36t+7=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-16t^{2}+36t+7-7=-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
-16t^{2}+36t=-7
O‘zidan 7 ayirilsa 0 qoladi.
\frac{-16t^{2}+36t}{-16}=-\frac{7}{-16}
Ikki tarafini -16 ga bo‘ling.
t^{2}+\frac{36}{-16}t=-\frac{7}{-16}
-16 ga bo'lish -16 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{9}{4}t=-\frac{7}{-16}
\frac{36}{-16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t^{2}-\frac{9}{4}t=\frac{7}{16}
-7 ni -16 ga bo'lish.
t^{2}-\frac{9}{4}t+\left(-\frac{9}{8}\right)^{2}=\frac{7}{16}+\left(-\frac{9}{8}\right)^{2}
-\frac{9}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{8} olish uchun. Keyin, -\frac{9}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{9}{4}t+\frac{81}{64}=\frac{7}{16}+\frac{81}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{8} kvadratini chiqarish.
t^{2}-\frac{9}{4}t+\frac{81}{64}=\frac{109}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{16} ni \frac{81}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(t-\frac{9}{8}\right)^{2}=\frac{109}{64}
t^{2}-\frac{9}{4}t+\frac{81}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{9}{8}\right)^{2}}=\sqrt{\frac{109}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{9}{8}=\frac{\sqrt{109}}{8} t-\frac{9}{8}=-\frac{\sqrt{109}}{8}
Qisqartirish.
t=\frac{\sqrt{109}+9}{8} t=\frac{9-\sqrt{109}}{8}
\frac{9}{8} ni tenglamaning ikkala tarafiga qo'shish.