w uchun yechish
w=-9
w=-3
Baham ko'rish
Klipbordga nusxa olish
w\left(-12\right)+8=ww+35
w qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini w ga ko'paytirish.
w\left(-12\right)+8=w^{2}+35
w^{2} hosil qilish uchun w va w ni ko'paytirish.
w\left(-12\right)+8-w^{2}=35
Ikkala tarafdan w^{2} ni ayirish.
w\left(-12\right)+8-w^{2}-35=0
Ikkala tarafdan 35 ni ayirish.
w\left(-12\right)-27-w^{2}=0
-27 olish uchun 8 dan 35 ni ayirish.
-w^{2}-12w-27=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
w=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-1\right)\left(-27\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -12 ni b va -27 ni c bilan almashtiring.
w=\frac{-\left(-12\right)±\sqrt{144-4\left(-1\right)\left(-27\right)}}{2\left(-1\right)}
-12 kvadratini chiqarish.
w=\frac{-\left(-12\right)±\sqrt{144+4\left(-27\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
w=\frac{-\left(-12\right)±\sqrt{144-108}}{2\left(-1\right)}
4 ni -27 marotabaga ko'paytirish.
w=\frac{-\left(-12\right)±\sqrt{36}}{2\left(-1\right)}
144 ni -108 ga qo'shish.
w=\frac{-\left(-12\right)±6}{2\left(-1\right)}
36 ning kvadrat ildizini chiqarish.
w=\frac{12±6}{2\left(-1\right)}
-12 ning teskarisi 12 ga teng.
w=\frac{12±6}{-2}
2 ni -1 marotabaga ko'paytirish.
w=\frac{18}{-2}
w=\frac{12±6}{-2} tenglamasini yeching, bunda ± musbat. 12 ni 6 ga qo'shish.
w=-9
18 ni -2 ga bo'lish.
w=\frac{6}{-2}
w=\frac{12±6}{-2} tenglamasini yeching, bunda ± manfiy. 12 dan 6 ni ayirish.
w=-3
6 ni -2 ga bo'lish.
w=-9 w=-3
Tenglama yechildi.
w\left(-12\right)+8=ww+35
w qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini w ga ko'paytirish.
w\left(-12\right)+8=w^{2}+35
w^{2} hosil qilish uchun w va w ni ko'paytirish.
w\left(-12\right)+8-w^{2}=35
Ikkala tarafdan w^{2} ni ayirish.
w\left(-12\right)-w^{2}=35-8
Ikkala tarafdan 8 ni ayirish.
w\left(-12\right)-w^{2}=27
27 olish uchun 35 dan 8 ni ayirish.
-w^{2}-12w=27
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-w^{2}-12w}{-1}=\frac{27}{-1}
Ikki tarafini -1 ga bo‘ling.
w^{2}+\left(-\frac{12}{-1}\right)w=\frac{27}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
w^{2}+12w=\frac{27}{-1}
-12 ni -1 ga bo'lish.
w^{2}+12w=-27
27 ni -1 ga bo'lish.
w^{2}+12w+6^{2}=-27+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
w^{2}+12w+36=-27+36
6 kvadratini chiqarish.
w^{2}+12w+36=9
-27 ni 36 ga qo'shish.
\left(w+6\right)^{2}=9
w^{2}+12w+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(w+6\right)^{2}}=\sqrt{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
w+6=3 w+6=-3
Qisqartirish.
w=-3 w=-9
Tenglamaning ikkala tarafidan 6 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}