Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-10x^{2}+7x-7+15x^{2}-9
7x ni olish uchun -x va 8x ni birlashtirish.
5x^{2}+7x-7-9
5x^{2} ni olish uchun -10x^{2} va 15x^{2} ni birlashtirish.
5x^{2}+7x-16
-16 olish uchun -7 dan 9 ni ayirish.
factor(-10x^{2}+7x-7+15x^{2}-9)
7x ni olish uchun -x va 8x ni birlashtirish.
factor(5x^{2}+7x-7-9)
5x^{2} ni olish uchun -10x^{2} va 15x^{2} ni birlashtirish.
factor(5x^{2}+7x-16)
-16 olish uchun -7 dan 9 ni ayirish.
5x^{2}+7x-16=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-7±\sqrt{7^{2}-4\times 5\left(-16\right)}}{2\times 5}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{49-4\times 5\left(-16\right)}}{2\times 5}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-20\left(-16\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49+320}}{2\times 5}
-20 ni -16 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{369}}{2\times 5}
49 ni 320 ga qo'shish.
x=\frac{-7±3\sqrt{41}}{2\times 5}
369 ning kvadrat ildizini chiqarish.
x=\frac{-7±3\sqrt{41}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{3\sqrt{41}-7}{10}
x=\frac{-7±3\sqrt{41}}{10} tenglamasini yeching, bunda ± musbat. -7 ni 3\sqrt{41} ga qo'shish.
x=\frac{-3\sqrt{41}-7}{10}
x=\frac{-7±3\sqrt{41}}{10} tenglamasini yeching, bunda ± manfiy. -7 dan 3\sqrt{41} ni ayirish.
5x^{2}+7x-16=5\left(x-\frac{3\sqrt{41}-7}{10}\right)\left(x-\frac{-3\sqrt{41}-7}{10}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-7+3\sqrt{41}}{10} ga va x_{2} uchun \frac{-7-3\sqrt{41}}{10} ga bo‘ling.