Omil
\left(2-5x\right)\left(2x+3\right)
Baholash
\left(2-5x\right)\left(2x+3\right)
Grafik
Viktorina
Polynomial
- 10 x ^ { 2 } - 11 x + 6
Baham ko'rish
Klipbordga nusxa olish
a+b=-11 ab=-10\times 6=-60
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda -10x^{2}+ax+bx+6 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -60-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Har bir juftlik yigʻindisini hisoblang.
a=4 b=-15
Yechim – -11 yigʻindisini beruvchi juftlik.
\left(-10x^{2}+4x\right)+\left(-15x+6\right)
-10x^{2}-11x+6 ni \left(-10x^{2}+4x\right)+\left(-15x+6\right) sifatida qaytadan yozish.
2x\left(-5x+2\right)+3\left(-5x+2\right)
Birinchi guruhda 2x ni va ikkinchi guruhda 3 ni faktordan chiqaring.
\left(-5x+2\right)\left(2x+3\right)
Distributiv funktsiyasidan foydalangan holda -5x+2 umumiy terminini chiqaring.
-10x^{2}-11x+6=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-10\right)\times 6}}{2\left(-10\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-10\right)\times 6}}{2\left(-10\right)}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121+40\times 6}}{2\left(-10\right)}
-4 ni -10 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{121+240}}{2\left(-10\right)}
40 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{361}}{2\left(-10\right)}
121 ni 240 ga qo'shish.
x=\frac{-\left(-11\right)±19}{2\left(-10\right)}
361 ning kvadrat ildizini chiqarish.
x=\frac{11±19}{2\left(-10\right)}
-11 ning teskarisi 11 ga teng.
x=\frac{11±19}{-20}
2 ni -10 marotabaga ko'paytirish.
x=\frac{30}{-20}
x=\frac{11±19}{-20} tenglamasini yeching, bunda ± musbat. 11 ni 19 ga qo'shish.
x=-\frac{3}{2}
\frac{30}{-20} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{8}{-20}
x=\frac{11±19}{-20} tenglamasini yeching, bunda ± manfiy. 11 dan 19 ni ayirish.
x=\frac{2}{5}
\frac{-8}{-20} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
-10x^{2}-11x+6=-10\left(x-\left(-\frac{3}{2}\right)\right)\left(x-\frac{2}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\frac{3}{2} ga va x_{2} uchun \frac{2}{5} ga bo‘ling.
-10x^{2}-11x+6=-10\left(x+\frac{3}{2}\right)\left(x-\frac{2}{5}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
-10x^{2}-11x+6=-10\times \frac{-2x-3}{-2}\left(x-\frac{2}{5}\right)
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
-10x^{2}-11x+6=-10\times \frac{-2x-3}{-2}\times \frac{-5x+2}{-5}
Umumiy maxrajni topib va suratlarni ayirib \frac{2}{5} ni x dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
-10x^{2}-11x+6=-10\times \frac{\left(-2x-3\right)\left(-5x+2\right)}{-2\left(-5\right)}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{-2x-3}{-2} ni \frac{-5x+2}{-5} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
-10x^{2}-11x+6=-10\times \frac{\left(-2x-3\right)\left(-5x+2\right)}{10}
-2 ni -5 marotabaga ko'paytirish.
-10x^{2}-11x+6=-\left(-2x-3\right)\left(-5x+2\right)
-10 va 10 ichida eng katta umumiy 10 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}